
Stream Processor (SP-1)
Data Sheet

Revision 2.1

August 1, 2002

Lexra, Inc.

Proprietary and Confidential

DO NOT COPY

COPY NUMBER

Stream Processor Data Sheet Revision 2.1 August 1, 2002

Lexra Proprietary and Confidential
Copyright 2002 Lexra, Inc.
ALL RIGHTS RESERVED

MIPS and MIPS32 are trademarks and/or registered trademarks of MIPS Technologies, Inc.
Other trademarks are the property of their respective owners.

DO NOT COPY

.

Stream Processor Lexra Inc. Proprietary & Confidential i
Rev 2.1 August 1, 2002 DO NOT COPY

Table of Contents

Chapter 1. Stream Processor Product Overview
1.1. Introduction ... 1
1.2. Key Features ... 2
1.3. Specifications .. 3
1.4. SP-1 Architecture .. 3

1.4.1. LX4580 CPU .. 3
1.4.2. Fine-Grained Hardware Multi-Threading (HMT) .. 4
1.4.3. Crossbar Interconnect ... 4
1.4.4. DMA Controllers .. 5

1.5. Interfaces ... 5
1.6. Software Support .. 6

1.6.1. Operating Systems .. 6
1.6.2. Development Tools .. 6
1.6.3. Sample Applications .. 6

Chapter 2. MIPS32 Implementation Specifics
2.1. MIPS32 Implementation Specifics Overview .. 7
2.2. MIPS32 Instructions ... 7

2.2.1. LL/SC ... 7
2.2.2. SYNC ... 8
2.2.3. PREF .. 8
2.2.4. CACHE .. 9
2.2.5. WAIT ... 9
2.2.6. Divide (all variants) .. 9
2.2.7. UDI ... 9

2.3. CP0 Registers .. 10
2.4. Interrupts ... 13
2.5. Exceptions ... 14

2.5.1. Reset Context Wait and EJBOOT .. 15
2.5.2. DM Wait and EJTAG (Debug) Exceptions .. 15

2.6. Address Spaces ... 15
2.6.1. Non-Coherence for Different Access Types .. 16

2.7. Endianness .. 16
2.8. EJTAG .. 16
2.9. CP0 Hazards ... 17
2.10. Performance Counters .. 17
2.11. Release 2 Architecture Support .. 18

2.11.1. Release 2 Interrupt Modes, Exceptions, Shadow GPRs 19
2.11.2. Hazard Barrier Instructions .. 19
2.11.3. Field, Rotate, Shuffle Instructions .. 20
2.11.4. User Access to Hardware Registers .. 20
2.11.5. CP0 Register Changes .. 20
2.11.6. 64-bit Coprocessor (FPU) ... 21
2.11.7. 1KB Pages .. 21

Chapter 3. Reset (RST)
3.1. Reset Overview ... 23

ii Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

3.2. Reset Distribution ... 24
3.3. Reset Operation .. 24
3.4. Reset Registers .. 25

3.4.1. TestAndSet Register (TAS) ... 25
3.5. Reset External SP-1 Interfaces ... 25

Chapter 4. Interrupts (INT)
4.1. Interrupt Overview .. 27
4.2. Interrupt Architecture ... 28

4.2.1. External Interrupts .. 28
4.2.2. Device Interrupt Messages ... 28
4.2.3. CPU Cross Interrupt Messages .. 28
4.2.4. Hardware Error Interrupt .. 29

4.3. Interrupt Registers .. 29
4.3.1. IRR External Interrupt Master Mask Register (IRR_EIMM\) 29
4.3.2. IRR CPU Cross Interrupt Register (IRR_CCI) .. 30
4.3.3. Module Error Capture .. 31

4.4. Interrupt External SP-1 Interfaces .. 32

Chapter 5. Address Space
5.1. Address Space Overview .. 33
5.2. Address Space Size ... 34
5.3. Physical Address Space Decoding .. 34
5.4. Boot Space .. 35
5.5. Control Space .. 35
5.6. EJTAG Space .. 36
5.7. Generic I/O Space ... 36
5.8. PCI-X Space ... 36
5.9. SDRAM Space .. 36
5.10. Address Space Configuration Registers ... 37
5.11. Error Detection ... 37

Chapter 6. Crossbar (XB)
6.1. Crossbar Overview ... 39
6.2. Crossbar Architecture ... 40
6.3. Crossbar Messages .. 41

6.3.1. Single Beat Message Format .. 44
6.3.2. RLE, RLME Request Message Format .. 44
6.3.3. DS, WB, WH, WT, WW Message Format .. 44
6.3.4. DL*, WLN, IEA, IRA Message Format .. 44
6.3.5. Message Header, Eviction Address Beat Format .. 45
6.3.6. Data Beat Format .. 46
6.3.7. Error Detection and Reporting ... 46

6.4. Crossbar Operation ... 46
6.4.1. Clocking ... 46
6.4.2. Initiator-Target Relationships .. 46
6.4.3. Crossbar Transfer Networks ... 47

6.5. Crossbar Internal SP-1 Interfaces ... 48
6.5.1. Initiator and Target Message Interfaces ... 48
6.5.2. Initiator and Target Protocols ... 49

Chapter 7. LX4580 CPU
7.1. LX4580 CPU Overview ... 51

Stream Processor Lexra Inc. Proprietary & Confidential iii
Rev 2.1 August 1, 2002 DO NOT COPY

7.2. LX4580 CPU Core ... 52
7.3. Instruction Cache .. 52
7.4. Data Cache .. 52
7.5. Cache Line Replacement Algorithm .. 53
7.6. CPU Error Handling ... 54

Chapter 8. CPU Crossbar Interface (XBI)
8.1. CPU Crossbar Interface Overview ... 55
8.2. CBUS Interface ... 56
8.3. IBUS Interface .. 56
8.4. Request FIFO .. 56
8.5. Inquiry & Request Reply FIFO .. 56
8.6. Inquiry Reply FIFO .. 56
8.7. System Address Space Configuration Registers ... 56

8.7.1. AS_DRAMMask Register .. 57
8.7.2. AS_PCIABase Register .. 57
8.7.3. AS_PCIAMask Register .. 58
8.7.4. AS_PCIBBase Register .. 58
8.7.5. AS_PCIBMask Register ... 59
8.7.6. AS_GIOBase Register .. 59
8.7.7. AS_GIOMask Register .. 60
8.7.8. CPUX_IntPend Register .. 60
8.7.9. CPUX_IntMask Register .. 61
8.7.10. DEV_IntPend Register ... 61
8.7.11. DEV_IntMask Register .. 62
8.7.12. EXT_IntPend Register ... 62
8.7.13. EXT_IntMask Register .. 63

8.8. CBUS Interface ... 64
8.8.1. CBUS Request Interface .. 64
8.8.2. CBUS Command Encoding ... 65
8.8.3. RLE & RLME Eviction Address ... 65
8.8.4. CBUS Request Reply Interface .. 66
8.8.5. CBUS Request Reply Destination Encoding ... 66

8.9. IBUS Interface .. 67
8.9.1. Inquiry Interface ... 67
8.9.2. IBUS Command Encoding ... 67
8.9.3. Inquiry Reply Interface .. 67
8.9.4. IBUS Header Encoding .. 67

8.10. Interrupt Interface ... 68

Chapter 9. Memory Subsystem (MS)
9.1. Memory Subsystem Overview ... 69
9.2. Memory Subsystem Requirements ... 70

9.2.1. Transaction Rate and Bandwidth ... 70
9.3. Supported Memory Configurations .. 71
9.4. Messages and Transactions ... 72
9.5. Memory Ordering and Interleave ... 72
9.6. L2 Cache ... 73
9.7. Duplicate L1 Tags ... 73
9.8. Coherency Protocol Overview .. 74
9.9. Cacheability and Coherence ... 74
9.10. Inquiry Messages .. 75

iv Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.11. L2 Cache Line Replacement ... 76
9.12. Coherency Effects of Crossbar Queues .. 76
9.13. Configuration .. 78

9.13.1. MSnCfg Register .. 78
9.13.2. MSnPld Register .. 78
9.13.3. MSnMemCtl Registers ... 79

9.14. Performance Counters .. 80
9.14.1. MSnPcnt0, MSnPcnt1 Register ... 80
9.14.2. MSnPcntEn Register .. 80
9.14.3. MSnPcntEv0, MSnPcntEv1 Register ... 81

9.15. Error Handling .. 82
9.15.1. MSnErrEn0, MSnErrEn1 Register ... 83
9.15.2. MSnErrTO Register ... 84
9.15.3. MSnErrStat0, MSnErrStat1 Register ... 84

9.16. Interfaces .. 85
9.16.1. Crossbar Interface .. 85
9.16.2. Interrupt Interface ... 86
9.16.3. SDRAM Interface .. 86

9.17. Che Transactions .. 87

Chapter 10. Direct Memory Access (DMA)
10.1. Direct Memory Access Overview .. 97
10.2. Addressing .. 98

10.2.1. Ethernet and PCI-X DMA Controller Organization 99
10.2.2. Memory Move DMA Controller Organization .. 101

10.3. Queue Configuration .. 102
10.4. Queue Operation ... 102
10.5. Buffer Descriptors .. 104
10.6. Input Queue Assignment with Packet Mapper ... 109
10.7. Inserting Leading Fill Into Input Packets ... 113
10.8. Skipping Leading Fill From Output Packets .. 114
10.9. Input Packet Timestamp ... 114
10.10. Output Queue Selection .. 114
10.11. Interrupts ... 114
10.12. Checksum Calculation .. 115
10.13. Error Detection and Handling ... 115
10.14. Memory Bandwidth Requirement .. 116
10.15. DMA Controller Registers .. 117

Chapter 11. Ethernet Media Access Controller (MAC)
11.1. Ethernet Media Access Controller Overview ... 119
11.2. Gigabit Media Independent Interface (GMII) .. 120
11.3. Error Signalling and Statistics Reporting ... 120
11.4. Registers ... 122

Chapter 12. PCI-X Bridge (PXB)
12.1. PCI-X Bridge Overview ... 127
12.2. PCI-X Interface ... 128
12.3. PCI-X Arbitration ... 128
12.4. PCI-X Master Operation ... 129
12.5. PCI-X Target Operation ... 129
12.6. PCI-X Registers .. 129

Stream Processor Lexra Inc. Proprietary & Confidential v
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 13. System Control Module (SC)
13.1. System Control Module Overview ... 131
13.2. Cross Interrupt Reflector .. 132
13.3. System Timers .. 132
13.4. I2C Interface ... 134
13.5. Test And Set ... 134
13.6. RS-232 Serial UART .. 134
13.7. Generic I/O Interface .. 136

Chapter 14. Generic I/O Interface (GIO)
14.1. Generic I/O Interface Overview ... 137
14.2. Generic I/O Interface Signals and Timing .. 138
14.3. Generic I/O Configuration Overview ... 139
14.4. Generic I/O Transaction Conversion .. 140
14.5. Generic I/O Transactions .. 140
14.6. Errors and Error Reporting ... 149
14.7. Generic I/O Configuration Registers .. 149

Chapter 15. EJTAG (EJ)
15.1. EJTAG Differences from 2.0.0. .. 158

15.1.1. EJTAG TAP Registers ... 158
15.1.2. EJTAG Registers in FF3 (DRSeg) ... 160

15.2. Description of LX4580 CPU Specific EJTAG features ... 161
15.2.1. Disable Other Contexts (DOC) EJTAG Control Register bit 6 161
15.2.2. Context Select (CXS) EJTAG Control Register Bits 30:29 161
15.2.3. Context in Debug Mode (CDM) EJC Bits 28:27 ... 161
15.2.4. CNTXUse & CNTX in Breakpoint Control Registers 162
15.2.5. Precise Data Breaks .. 162
15.2.6. Data Value Break Loads .. 162
15.2.7. EJTAG_ADDR (36-bit) ... 162
15.2.8. PC Trace Buffer & TAC .. 162
15.2.9. Instruction Replay .. 166
15.2.10. DMwait ... 166
15.2.11. Debug Mode Overrides Disable Context ... 167
15.2.12. EJTAG BOOT .. 167
15.2.13. The Lexra Probe ... 167

Chapter 16. Performance Counters
16.1. Performance Counter Overview .. 169
16.2. Performance Counter Architecture .. 169
16.3. Performance Counter Operation .. 169
16.4. Summary of Performance Counters .. 170

Chapter 17. Error Detection and Reporting
17.1. Error Detection and Reporting Overview ... 171
17.2. Bus Error Reporting .. 171
17.3. Hardware Error Reporting .. 172
17.4. Error Detection Configuration Registers .. 172
17.5. Error Detection and Reporting Pins .. 173

Chapter 18. Interfaces
18.1. Interfaces ... 175

vi Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential vii
Rev 2.1 August 1, 2002 DO NOT COPY

List of Figures

Figure 1: IC Diagram ... 1
Figure 2: LX4580CPU Diagram .. 3
Figure 3: Reset Overview... 23
Figure 4: System View of Interrupt.. 27
Figure 5: Interrupt Architecture ... 28
Figure 6: Address Space Overview.. 33
Figure 7: Address Space Decoding .. 34
Figure 8: Overview of Crossbar ... 39
Figure 9: Crossbar Architecture ... 40
Figure 10: Crossbar Messages.. 41
Figure 11: Eastbound Crossbar Network ... 47
Figure 12: Westbound Crossbar Network .. 47
Figure 13: Message Transfer Protocol ... 49
Figure 14: LX4580 CPU and Crossbar Interface ... 51
Figure 15: CPU Crossbar Interface Architecture .. 55
Figure 16: Memory Subsystem Blocks .. 69
Figure 17: Direct Memory Access System Overview.. 97
Figure 18: Ethernet and PCI-X DMA Controller Organization ... 99
Figure 19: Ethernet and PCI-X DMA Flow ... 100
Figure 20: Memory Move DMA Controller Organization... 101
Figure 21: Memory Move DMA Flow... 101
Figure 22: Input Pending Queue .. 107
Figure 23: Input Completed, Output Pending, Output Completed Queues............................ 108
Figure 24: Memory to Memory Copy Pending and Completed Queues................................ 108
Figure 25: Packet Mapper Data Flow... 109
Figure 26: Input Mapping and Workload Assignment... 113
Figure 27: Gigabit Ethernet Memory Bandwidth Requirement... 116
Figure 28: Ethernet Media Access Controller Connectivity .. 119
Figure 29: Overview of PCI-X Bridge... 127
Figure 30: System Control Module Overview ... 131
Figure 31: Generic I/O Interface .. 137
Figure 32: Example Generic I/O Interface Application ... 141
Figure 33: Generic I/O Simple Read.. 144
Figure 34: Generic I/O Simple Write ... 144
Figure 35: Generic I/O Multiplexed Read.. 145
Figure 36: Generic I/O Multiplexed Write... 145
Figure 37: Generic I/O Read with Data Handshake... 146
Figure 38: Generic I/O Write with Data Handshake.. 146
Figure 39: Generic I/O Multiplexed Read with Data Handshake .. 147
Figure 40: Generic I/O Multiplexed Write with Data Handshake ... 147
Figure 41: Generic I/O Burst Read... 148
Figure 42: Generic I/O Burst Write.. 148
Figure 43: SP-1 ETJAG Organization.. 157
Figure 44: CPU EJTAG Block Diagram.. 163
Figure 45: Performance Counter Structure ... 169
Figure 46: Error Detection Block Architecture.. 172

viii Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential ix
Rev 2.1 August 1, 2002 DO NOT COPY

List of Tables

Table 1: Summary of Stream Processor Interfaces... 5
Table 2: Standard CP0 Registers .. 10
Table 4: Interrupt Sources... 13
Table 3: Implementation Dependent CP0 Registers ... 13
Table 5: Exception List ... 14
Table 6: CntxSel (bits 13:11) Field of PerfCnt Control Registers.. 17
Table 7: Event Field of PerfCnt Control Registers ... 17
Table 8: Hardware Register Values .. 20
Table 9: Reset External Interface.. 25
Table 10: Interrupt External Interface... 32
Table 11: Control Space Organization.. 35
Table 12: Crossbar Agents.. 40
Table 13: Eastbound Request Messages ... 41
Table 14: Westbound ReqReply Messages... 43
Table 15: Westbound Inquiry Messages... 43
Table 16: Eastbound InqReply Messages ... 44
Table 17: Initiator-Target Relationships ... 46
Table 18: Initiator Message Interface ... 48
Table 19: Target Message Interface.. 48
Table 20: Instruction Cache Transactions... 52
Table 21: Data Cache Transactions .. 53
Table 22: Cache Line Replacement Algorithm... 54
Table 23: CBUS Request Internal Interface ... 64
Table 24: CBUS Commands... 65
Table 25: CBUS Request Reply Internal Interface... 66
Table 26: CBUS Destination Encoding .. 66
Table 27: CBUS Line State and Transaction Encoding.. 66
Table 28: IBUS Request Internal Interface... 67
Table 29: IBUS Commands .. 67
Table 30: IBUS Reply Internal Interface .. 67
Table 31: Interrupt Interface ... 68
Table 32: Memory Configurations w/DIMMs.. 71
Table 33: Memory Configurations w/ 128 Mb Components.. 71
Table 34: Memory Configurations w/ 256 Mb Components.. 71
Table 35: Memory Configurations w/ 512 Mb Components.. 71
Table 36: L2 Cache States .. 73
Table 37: Duplicate L1 Cache States.. 73
Table 38: Request Attributes... 74
Table 39: Memory Controller Register Offsets .. 79
Table 40: MS Errors... 82
Table 41: Control Interface... 85
Table 42: Eastbound Request Message Interface ... 85
Table 43: Eastbound InqReply Message Interface ... 85
Table 44: Westbound Message Interface.. 85
Table 45: Interrupt Interface ... 86
Table 46: SDRAM Interface... 86
Table 47: DMA Capabilities ... 98
Table 48: Queue Configuration Registers... 102
Table 49: Per-Queue State Registers .. 102
Table 50: Buffer Descriptor Contents... 104

x Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Table 51: Mapper Registers .. 110
Table 52: Field Processing Statements ... 110
Table 53: MAC Configuration and Status Registers .. 117
Table 54: GMII External Interface.. 120
Table 55: Receive Status Vector... 120
Table 56: Transmit Status Vector ... 121
Table 57: MAC Configuration and Status Registers .. 122
Table 58: PCI-X Interface... 128
Table 59: Conversion of Internal Transactions to PCI-X Transactions................................ 129
Table 60: PCI-X Transactions to Crossbar Transactions... 129
Table 61: Generic I/O Signals... 138
Table 62: Generic I/O Timing Parameters.. 139
Table 63: Example GIO Application Signals ... 142
Table 64: Example GIO Application Parameters ... 143
Table 65: Summary of GIO Config Registers for Each Device ... 149
Table 66: EJTAG TAP Registers.. 158
Table 67: EJTAG DRSeg Registers.. 160
Table 68: COP0 EJTAG registers... 161
Table 69: Summary of Performance Counters.. 170
Table 70: Additional Performance Monitoring Features .. 170
Table 71: Interface Summary.. 175

Stream Processor Lexra Inc. Proprietary & Confidential 1
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 1. Stream Processor Product Overview

1.1. Introduction

The Stream Processor (SP-1) IC provides the ultimate in both performance and flexibility required to execute
demanding network communication applications on 1 Gigabit per second packet streams. The SP-1 includes
four (4) of Lexra’s LX4580 RISC CPUs, with independent L1 caches, that operate in parallel on independent
packets or on independent packet flows. The LX4580 CPU implements the MIPS32 ISA, with additional
specialized instructions for optimized packet processing. Peak processor performance is 2800 Dhrystone 2.1
MIPS. The CPUs also incorporate Lexra’s innovative fine-grained Hardware Multi-Threading (HMT)
technology. As a result, high CPU performance can be sustained even while L1 cache misses are serviced.

The CPUs are interconnected to shared resources through a high bandwidth full-duplex Crossbar. The
Crossbar provides a peak bandwidth of 384 Gbps and can sustain 50 Gigabits per second full duplex data
bandwidth to shared SDRAM. Shared resources include a Memory Subsystem with a unified Level 2 cache
and cache Coherency Engine. The Memory Subsystems includes two (2) SDRAM controllers with 64-bit
data interface to external DDR SDRAM. The Coherency Engine provides hardware support for cache
coherency among all CPUs.

Typically, packets enter and exit the SP-1 through the Ethernet MAC interfaces. These interfaces are full
duplex and operate at up to 125 MHz with 8-bit data buses to support 1 Gbps traffic. The intelligent DMA
Controller associated with each MAC interface allows packets to be queued in off-chip SDRAM without
interrupting the application program. Similar DMA Controllers are associated with other SP-1 interfaces.
Three (3) independent MAC interfaces are provided so that the SP-1 can be used in applications requiring
moderate connectivity without the need for extra board-level components.

The Memory Move Controller transfers data from one region of SDRAM to another. This is useful, for
example, for transferring incoming packets between temporary buffers and specialized micro-flow queues

Figure 1: IC Diagram

Memory Subsystem

Coherency Engine

64KB L2 cache

Generic
I/O

Interface

Crossbar

LX4580

CPU0

EJTAG
Probe

Debug
I/F

LX4580

CPU1

LX4580

CPU2

(4) MIPS32 CPUs. 500MHz CPU clock
with fine-grained Hardware Multi-Threading (HMT)

Generic/Boot
Bus

Memory
Move
Cont

I2C
Interface

I2C
Bus

PCI-X
and DMA

Cont

PCI-X
Bus

MAC
w/ DMA
Cont (3)

MII or
GMII

LX4580

CPU3

DDR
SDRAM

DDR
SDRAM

UART
Controller

Serial
Interface

Timers
and

Interrupts

Peripheral Subsystem

Chapter 1. Stream Processor Product Overview

2 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

for later processing by the application program. Again, the Memory Move Controller performs its transfers
without program intervention.

The SP-1 incorporates high performance industry standard I/O interfaces to permit the SP-1 to be easily
designed into a wide variety of systems. In addition to Ethernet MACs, a PCI-X interface is included for
communication with coprocessors. The generic I/O bus permits simple, low-cost connections to boot

EPROMs, and micro-control components. The I2C interface allows an SP-1 application to configure and
monitor other components in the system. The UART provides an interface to a debug console or remote
access port. The EJTAG interface enables industry-standard debug software.

Target applications for the SP-1 include:

• Enterprise Security Systems
These systems provide specialized services such as VPN, firewall and intrusion detection
for traffic between the enterprise LAN or data center and WAN. The SP-1 can be used for
either Linux-based application services or for “front-end” network processing in these
systems.

• Web Appliances
Typical products include Switches, Web Directors, Web Caches. The SP-1 provides
consolidated functionality with strong Layer 4-7 decision making for policy and content-
base load balancing, security, session and site persistence based on HTTP cookies, IP
address, etc.

• Network Attached Storage (NAS) Servers
New generation NAS Servers provide remote storage-on-demand while lowering
administration costs and leverage the learning curve of 3rd party internet technology. The
SP-1 provides TCP termination, iSCSI protocol conversion and security services.

1.2. Key Features

• (4) MIPS32 RISC CPUs with Lexra ISA extensions and fine-grained Hardware Multi-
Threading (HMT). Each CPU includes a 64KB L1 instruction cache and a 16KB L1 data
cache.

• Crossbar Interconnect. 64-bit data ports. Full-duplex. Peak data bandwidth, 32 Gbps/port.

• 64-bit Memory Subsystem. Level 2 cache memory, coherency engine and controller for 2
external SDRAM interfaces. Total unified Level 2 cache memory, 64 KB. Total external
DDR SDRAM up to 8 GB, external SDRAM bandwidth up to 50 Gbps.

• DMA Controllers and Memory-to-Memory Move Controller. Background data transfer
between I/O interfaces and SDRAM or between two SDRAM locations.

• (3) 10/100/1000 Ethernet MAC Interfaces (MII or GMII).

• (1) PCI-X Interface, 32 bits at 133 MHz.

• (1) 32-bit Generic/Boot bus.

• (1) I2C Interface.

• (1) UART Interface.

• (2) System timers.

• Support for leading operating systems Linux®, VxWorks®.

• Complete SP-1 Development Platform.

1.3. Specifications

Stream Processor Lexra Inc. Proprietary & Confidential 3
Rev 2.1 August 1, 2002 DO NOT COPY

1.3. Specifications

• Technology: 0.13µm CMOS.

• 500 MHz processor clock.

• 2800 Dhrystone 2.1 MIPS at 1.4 DMIPS/MHz/CPU.

• Power dissipation: 5 W (worst-case)

• Voltage: 1.2 V

• Operating temperature: 0°C to +70°C (commercial).

• Package: 676-pin PBGA.

1.4. SP-1 Architecture

1.4.1. LX4580 CPU

The SP-1 incorporates four (4) LX4580 CPUs, illustrated in Figure 2. The LX4580 is a complete RISC
processor subsystem, optimized for high-performance packet processing.

The major blocks are the Register file and ALU (RALU), Coprocessor 0 (CP0), the Local Memory Interfaces
(LMI) to 64KB instruction cache and to 16KB data cache. The Crossbar interface unit includes a write buffer
and provides a 64-bit bi-directional split transaction interface to the Crossbar.

Lexra’s LX4580 CPU implements the full Release 2 MIPS32 instruction set. The MIPS32optional and
recommended features included in the CPU are detailed in Chapter 2. A number of implementation-specific
issues are also documented in Chapter 2. Lexra has extended the MIPS32 ISA with additional instructions for
optimized packet processing. These instructions are described in Chapter 2. The CPU includes an MMU and
support 36-bit physical addresses.

Figure 2: LX4580CPU Diagram

IADDR

ICACHE
64 KB

ILMI

DCACHE
16 KB

DLMI

CP0RALU

EJTAG

to debug probe

MMU

INTERRUPTS

DADDR

DBUS

input
transactions

output
transactions

IBUS Crossbar
Interface

Chapter 1. Stream Processor Product Overview

4 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

The CPU execution pipeline is 7-stage and exclusively uses the rising edge of the processor clock. The 7-
stage pipeline permits a full address-register-to-data-output-register cycle for both L1 instruction cache read
and L1 data cache read. As a result the CPU pipeline achieves maximum performance for its implementation
technology and methodology and will readily port to future technologies.

1.4.2. Fine-Grained Hardware Multi-Threading (HMT)

The LX4580 CPU incorporates Lexra’s proprietary implementation offine-grained Hardware Multi-
Threading (HMT). Although HMT is transparent to software it provides significant performance advantages
to the SP-1 customer that deserve attention in this overview.

In Lexra’s implementation, instructions are issued round-robin to four alternate pipeline flows. Each pipeline
flow has an independent program counter and general register file. Other software visible state is also
replicated as detailed in Chapter 2. In the absence of an L1 cache miss, the four pipeline flows support four
independent execution threads.

In typical network processing programs L1 data cache miss rates are high and a single-threaded processor is
idle much of the time. The problem can be mitigated somewhat with an on-chip Level 2 cache, offering faster
service time than main memory. However, in Lexra’s implementation of HMT, as few as two active threads
can maintain 100% CPU utilization while cache misses from the other two threads are being served.

Additional performance benefits from HMT result from the following:

• All timing-critical internal forwarding paths are eliminated. As a result, for a specific
technology and design methodology, high processor clock speed is achieved.

• Branch prediction is not required. There are sufficient cycles between issue slots so that
branch outcome can be correctly resolved without prediction. Other high-end RISC
architectures have devoted significant silicon area and power to minimizing stalls from
branch prediction failures.

• Load-to-use delay is minimized. The 7-stage pipeline would normally require two load-to-
use delay cycles. With HMT, the load-to-use delay is zero or one cycle depending on the
number of actively executing threads. As a result, the frequency of load interlock stalls is
reduced.

Lexra’s simulations indicate that if 3% of instructions cause an L1 cache miss, and 50% of the L1 cache
misses result in an L2 cache miss, HMT delivers a 3X performance benefit compared to a similar single issue
CPU. This performance benefit can be realized in applications with sufficient thread parallelism. Assigning
each thread one or more independent packet flows allows HMT to be fully exploited in the SP-1 target
applications.

1.4.3. Crossbar Interconnect

The Crossbar provides a high bandwidth full-duplex interconnect between the CPUs, DMA Controllers,
main memory, on-chip Level 2 cache and external I/O interfaces. The Crossbar operates at the SP-1’s system
clock rate (1/2 the CPU clock). The Crossbar’s internal data paths are 64-bits wide. Distributed queuing is
used, internal to the Crossbar, to eliminate head-of-line blocking. Ports can transfer 64-bits per cycle in each
direction and achieve peak data bandwidth of 32 Gbps/port.

The Crossbar can transfer words or sub-words. It also supports processor L1 cache line read and write
transfers (64 bytes). The Coherency Engine in the Memory Subsystem communicates with the CPUs using
Crossbar coherency signalling to insure that cache coherency is maintained in processor memory
transactions, without software intervention.

The Crossbar provides a point-to-point messaging protocol. Resources connected to the crossbar may operate
as aninitiator, as atarget, or both. Messages of a similar type between the same initiator-target pair are

1.4.4. DMA Controllers

Stream Processor Lexra Inc. Proprietary & Confidential 5
Rev 2.1 August 1, 2002 DO NOT COPY

always delivered in order. Error messages are used to report memory system errors. Interrupt messages are
used for processor-to-processor and device-to-processor signalling.

1.4.4. DMA Controllers

The Stream Processor provides multiple DMA controllers for high-speed data transfer between the main
memory and external interfaces, and from memory to memory. Each Ethernet MAC and PCI-X interface
includes a dedicated DMA Controller. The Memory Move Controller is a specialized DMA controller, used
for transfers between source and destination buffers located in the Stream Processor’s main memory. The
Ethernet MAC and PCI-X DMA controllers provide sustained full duplex data bandwidth of 1 Gbps in each
direction. The Memory Move DMA controller provides a data bandwidth of up to 10 Gbps.

Software can atomically enqueue new DMA requests and dequeue completed requests using simple stores
and loads to memory mapped registers within the DMA Controller, without requiring an interrupt for each
completed transfer. The controller provides atomicity for these operations so that multiple CPUs may access
the queues without prior synchronization or resource locking. Main memory data buffers are organized in
linked lists of buffer elements. The size and number of buffers in the list is software-defined.

1.5. Interfaces

Table 1 summarizes the interfaces provided by the Stream Processor.

Table 1: Summary of Stream Processor Interfaces

Name Qty Performance Function

SDRAM 2 64-bit data.

133 MHz clock

up to 26 Gbps/interface

Incoming/outgoing packet queues, micro-
flow queues, state tables.

MII/GMII 3 Up to 125MHz. clock.
Full -duplex.

8-bit Rx data, 8-bit Tx
data.

Point-to-point full duplex packet interface.
Glueless connection to a wide variety of
standard 10/100/1000 PHYs and switches.

PCI-X 1 133 MHz clock.

32-bit data. Total
bandwidth is 4.2 Gbps

The leading high-performance embedded
system bus standard.

Generic/Boot 1 32-bit asynchronous I/O
bus. 32-bit A/D or 24-bit
A/8-bit D modes.

Glueless address/data interface to devices
such EPROMs, microcontrollers.
Programmable timing and control.

I2C 1 Shared serial bus
interface. Up to 3.4
Mbps.

Full-duplex.

Low-cost, inter-chip control.

Conforms to I2C Version 2.1, Phillips
Semiconductor.

Serial 1 Serial I/O, up to 614,400
baud.

Simple 4-wire interface to applicaition-
specific debug terminal.

EJTAG 1 40 MHz clock. Scan chain debug.

Conforms to EJTAG 2.0.

Provides PC-trace. Multi-processor support.

Chapter 1. Stream Processor Product Overview

6 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

1.6. Software Support

1.6.1. Operating Systems

Two operating systems are provided for the Stream Processor:

• Linux®, version 2.4 and higher, with full SMP support running on all CPUs and hardware
threads. Full source code for the Linux® kernel is available from MontaVista™ and the
Hardware Abstraction Layer is available from Lexra and MontaVista™.

• VxWorks® version 5.4 running on one thread. The Hardware Abstraction Layer is
available from Wind River.

1.6.2. Development Tools

The following development tools are available:

• The MontaVista™ toolchain is available on more than 12 development platforms
including RedHat and Solaris.

• The GNU toolchain (compiler version 3.0.3 or higher; binutils version 2.11.2 or
higher) is available and is supported by Lexra for cross-compilation from Linux,
Solaris, and Windows/Cygwin hosts.

• The Tornado® toolchain is available from Wind River® on Solaris and Windows for
VxWorks® development.

• An EJTAG debugging solution is available from Embedded Performance, Inc.

• SP-1 Development Board. All of the above software tools and operating systems are
supported on Lexra’sSP-1 Development Board. The Board provides PHY and Link
Layer components to route packets to and from theSP-1. The SP-1packet and
control interfaces can be connected to customer-defined boards to provide a complete,
realistic development environment.

1.6.3. Sample Applications

Sample applications and device drivers showing how to use the interfaces of the processors are available
from Lexra in source form.

Stream Processor Lexra Inc. Proprietary & Confidential 7
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 2. MIPS32 Implementation Specifics

2.1. MIPS32 Implementation Specifics Overview

The MIPS32 architecture defines certain features as optional (or recommended), in which case they may be
completely omitted from a compliant implementation. Other MIPS32 features are defined as implementation
dependent, in which case one or more choices must be supported for compliance. Finally there are optional
extensions that an implementation may provide.

The purpose of this chapter is to detail the implementation dependent features of the LX4580 CPU used in
the Stream Processor. The specifics of each of the following areas is discussed in its own section:

• Instructions
• CP0 Registers
• Interrupts
• Exceptions
• Address Spaces
• Endianness
• EJTAG
• CP0 Hazards
• Release 2 Features

2.2. MIPS32 Instructions

This section describes implementation specific details of the following MIPS32 instructions:

• LL/SC
• SYNC
• PREF
• CACHE
• WAIT
• Divide (all variants)
• UDI

2.2.1. LL/SC

The unit of memory that is used to determine whether the SC should fail is one cache line. That is, after the
LL, a write to any byte in the line by any other entity will cause the SC to fail. In addition:

• Any load, store or CACHE instruction between the LL and the SC by the same context,
whennot in debug mode, will cause the SC to fail.

• Any ERET between the LL and SC by the same context will cause the SC to fail.

• Any store to the cache line by a different context in the same CPU between the LL and SC
will cause the SC to fail.

• A load or store between the LL and the SC by the same context in debug mode, may cause
the SC to fail in rare instances. The precise conditions are described below.

Chapter 2. MIPS32 Implementation Specifics

8 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

The remaining implementation of this feature relies solely on the state of the cache line within the L1 data
cache in the CPU as follows:

Note that there is no architecturally visible CP0 LLAddr register.

For HMT, a variant of the LLAddr register (just the data cache Way and Index) is used for two purposes:

• Another context is not allowed to cause a replacement eviction of the line between the LL
and SC. To prevent this, the particular data cache Way and Index (of the line used by the
LL) are saved while the SC is pending or until it is guaranteed to fail, whichever comes
first.

• Another context in the processor can store to the line, forcing the SC to fail. This is
detected by the L1 data cache using the saved Way and Index.

• If all four contexts have a pending SC for the same Index (each to a different Way), then
no Way of that Index is available for replacement eviction. Any load or store by any
context that isnot in debug mode, will enable a Way for eviction without impacting the
other contexts because it can cause its own context SC to fail. However, a load or store in
debug mode that requires a replacement eviction in the same Index will use the saved Way
of the context that is executing in debug mode. This rare case will also cause the SC to fail
for the context in question.

2.2.2. SYNC

There is only one outstanding data cache miss (for either loads or stores) at a time for each context.

An uncached load prevents further progress by a context until the load data returns.

Therefore all cached loads/stores and uncached loads are strongly ordered for any given context.

To cover the ordering of uncached stores, SYNC flushes uncached stores previously executed by the same
context, preventing forward progress by context executing the SYNC until all such stores are Acked by their
targets.

2.2.3. PREF

The instruction is treated as NOP.

On LL, if cache miss, request line Shared

 else line is already Shared or Modified (okay)

Write by another entity outside this CPU will invalidate the line

On SC, if dcache miss.............................. SC fails

 else if already Modified......................... SC passes

 else request line upgrade to Modified

 if invalidated before request completes........ SC fails

 else .. SC passes

2.2.4. CACHE

Stream Processor Lexra Inc. Proprietary & Confidential 9
Rev 2.1 August 1, 2002 DO NOT COPY

2.2.4. CACHE

The following operations are supported:

• I Index Invalidate
• D Index WritebackInvalidate / Index Invalidate
• I,D Index Store Tag
• I,D Hit Invalidate
• D Hit WritebackInvalidate / Hit Invalidate
• D Hit Writeback

 The following arenot implemented:

• S,T anything
• I Fill
• I,D Index Load Tag
• I,D Fetch and Lock (there are no Locks in instruction or data cache)

Since the instruction and data caches are shared by all four contexts in the CPU, it is the responsibility of
software to avoid conflicting CACHE instruction execution. Note that the Data cache Writeback operations
and the Instruction cache Invalidate operations are generally safe across contexts since they do not discard
potentially modified data. If the Store Tag operation is only used for initialization, that too should be safe to
use. Finally, the Data cache Hit Invalidate should be used with caution since it discards data that may have
been written by a context different than the one executing the CACHE instruction.

2.2.5. WAIT

Only Code 0 is supported.

When the WAIT instruction is executed by a context in the LX4580 CPU, that context is suspended from
further execution. The only way to restart a context after completion of a WAIT instruction is with anenabled
interrupt to that context. The EPC will point to the instruction after the WAIT.

Since the other contexts continue execution, the WAIT instruction does not cause the CPU clocks to stop nor
are the CPU caches disabled. Any power savings from the WAIT instruction would be on a gate-level basis in
that reduced pipeline activity would reduce the circuit switching current. The primary benefit of the WAIT
instruction is to reduce contention among contexts for the CPU pipeline slots while one or more contexts are
merely waiting for some external event. For this reason it is preferred to a software spin loop.

2.2.6. Divide (all variants)

The divider detects when the dividend has leading zeroes, reducing its latency in such cases.

2.2.7. UDI

The following User Defined Instructions are implemented:

• HASH rd, rt, keysize
Hash to Key. The 5-bit keysize is a value k in the range 4-24. The 32 source bits contained
in rt are hashed to form a key of k bits which is stored in rd[k-1:0]. The remaining bits of
rd are zeroed. If k is not in the range 4-24, the results are unpredictable.

Format: 31:26 011100 (Special2), 25:11 zero,rt,rd, 10:6 keysize, 5:0 110000 (Hash)

Chapter 2. MIPS32 Implementation Specifics

10 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

• ACS2 rd, rs, rt
Dual Add for Checksum. This instruction performs dual 16-bit ones complement addition.
Considering all quantities as unsigned 16-bit integers, add rs[15:0] to rt[15:0] and
independently add rs[31:16] to rt[31:16]. For each addition if there is a carry out of the
most significant bit of its result, add one to that result to form its final result. The final
results are stored in rd[15:0] and rd[31:16]

Format: 31:26 011100 (Special2), 25:11 rs,rt,rd, 10:6 zero, 5:0 110001 (Acs2)

2.3. CP0 Registers

This section describes implementation specific details of the CP0 registers. In Table 2 each of the standard
(MIPS32 Release 2) CP0 registers is listed, together with an indication if the register is not implemented. If it
is implemented there may be details on how the implementation handles certain fields in the register. For
registers that are implemented, the column labeled HMT indicates whether it is implemented independently
for each context (4) or just once per CPU (1). In Table 3, the implementation specific CP0 registers are
described. All of the implementation specific CP0 registers are implemented independently for each context
under HMT except CVSTag and CXCtrl (although in CXCtrl the context bits in the GTId field are in fact
unique by context).

Table 2: Standard CP0 Registers

Name Num Sel HMT Field Implementation Specific Information

Index 0 0 4 6-bits

Random 1 0 4 see notea

EntryLo0,1 2,3 0 4

PFN 36-bit PA supported

C only values 2 or 3 supported

Context 4 0 4

PageMask 5 0 4 only 4KB and 64MB pages, see noteb

MaskX always 2#11 (no 1KB pages)

PageGrain 5 1 not implemented

Wired 6 0 4

HWREna 7 0 4

BadVAddr 8 0 4

Count 9 0 1 counts cpu clocks

EntryHi 10 0 4

Compare 11 0 4

2.3. CP0 Registers

Stream Processor Lexra Inc. Proprietary & Confidential 11
Rev 2.1 August 1, 2002 DO NOT COPY

Status 12 0 4

CU321 always 0 (no FPU, no coprocessors)

RE always 0 (no ReverseEndian)

RP,FR,MX,PX always 0

TS always 0

SR always 0

Impl always 0

KX,SX,UX always 0

R0 always 0

IntCtl 12 1 4

IPTI always 7 (Timer interrupt in IP7)

IPPCI always 7 (PerfCnt interrupt in IP7)

EIC, VS always 0

SRSCtl 12 2 1 always 0

SRSMap 12 3 not implemented

Cause 13 0 4

DC all contexts must set this to stop Count

WP always 0

ExcCode see notec

EPC 14 0 4

PRId 15 0 1 (lx4580): 0x000bd101

EBase 15 1 4

CPUNum same value as CXCtrl.CPUNum

Config 16 0 4

M 1

BE 1 (always BigEndian)

KU,K23 value 3 (for Fixed Mapping Table, when
MT=3)

AT always 0

AR always 1

MT reset to 1 or 3 per config pin

VI always 0

K0 reset to 2, may be written values 2 or 3

Table 2: Standard CP0 Registers (Continued)

Name Num Sel HMT Field Implementation Specific Information

Chapter 2. MIPS32 Implementation Specifics

12 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Config1 16 1 1

M 0

MMU-1 (24 entry) 23

IS,IL,IA 64-byte linesize, 64KB Icache size, 4 ways

DS,DL,DA 64-byte linesize,16KB Dcache size,4 ways

C2,MD always 0

PC 1

WR,CA always 0

EP 1

FP always 0

Config2 16 2 not implemented

Config3 16 3 not implemented

LLAddr 17 0 not implemented

WatchLo 18 not implemented

WatchHi 19 not implemented

Debug 23 0 4

DEPC 24 0 4

PerfCnt 25 0-7 1 4 counters with controls.
See Section 2.10

ErrCtl 26 0 1

CacheErr 27 1 TBD format

TagLo 28 0 1 TBD format

DataLo 28 1 not implemented

TagHi 29 0 not implemented

DataHi 29 1 not implemented

ErrorEPC 30 0 4

DESAVE 31 0 1

a. The Random register is decremented on every instruction completion. The two most recently
used values by TLBWR in a TLBRefill exception are saved, and are never used in a subse-
quent TLBWR. TBD: an LFSR is used to further control the decrement of Random.

b. Only bits 26:25 of the Mask field in the PageMask register are implemented. Writing ones to
these bits signifies a 64MB page. All other bit positions return zeroes on reads.

c. The Cause register ExcCode field can have the following values: Int, Mod, TLBL, TLBS,
AdEL, AdES, IBE, DBE, Sys, Bp, RI, CpU, OV, Tr, CacheErr.
The Cause register ExcCode can never have the following values: FPE, C2E, MDMX,
WATCH, MCheck.

Table 2: Standard CP0 Registers (Continued)

Name Num Sel HMT Field Implementation Specific Information

2.4. Interrupts

Stream Processor Lexra Inc. Proprietary & Confidential 13
Rev 2.1 August 1, 2002 DO NOT COPY

2.4. Interrupts

The MIPS32 architecture defines eight interrupts, which are visible as the interrupt pending bits IP7:0 in the
CP0 Cause register. In Table 4 the source of each of these pending interrupts is indicated.

Table 3: Implementation Dependent CP0 Registers

Name Num Sel Bits Field Implementation Specific Information

CXCtrl 16 6

31 CXTaS Test and Set bit. Is set to 1 after any

reada

30:24 0

23:16 SW Software usable Read/Write field

15:12 0

11:8 DC3:0 Disable context in this CPU

7:5 0

4:0 CPUNum Same as EBASE.CPUNuma

CVSTag 16 7

31:0 CVSTag ReadOnly for Lexra Internal Use

a. The CXTaS bit allows atomic updates to the remaining fields of the CXCtrl register. A con-
text which reads this bit as one, shouldnot update any fields. A context which reads this bit
as zero should restore it to zero whether or not it updates other fields.

The CPUNum is a chip-wide unique identifier for the current thread of execution. The two
least significant bits are the context number within the CPU. This value is also readable
from the CPUNum field of the EBase CP0 register that is defined by MIPS32 Release 2 or,
if enabled in User mode, using the Release 2 RDHWR instruction specifying the CPUNum
hardware register. Using those other methods of obtaining CPUNum avoids the need to
check and possibly clear CXTaS.

Table 4: Interrupt Sources

Interrupt Definition Generation

IP0 Software 0 Write to Cause IP0

IP1 Software 1 Write to Cause IP1

IP2 Hardware 0 CPU cross interrupts (See Section 4.2.3)

IP3 Hardware 1 Device interrupts (See Section 4.2.2)

IP4 Hardware 2 Hardware error interrupt from Interrupt Reflector (See Section 4.2.4)

IP5 Hardware 3 0 (reserved) TBD (for off-chip real time interrupt?)

IP6 Hardware 4 External interrupts (See Section 4.2.1)

IP7 Hardware 5 Logically OR Timer interrupt with Performance Counter interrupt.

Chapter 2. MIPS32 Implementation Specifics

14 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

2.5. Exceptions

All of the exceptions that are defined by the MIPS32 architecture are in Table 5. The relevant implementation
specific aspects are indicated.

Table 5: Exception List

Exception Implementation Specifics

Reset

SoftReset implemented like Reset

Debug SingleStep

Debug Interrupt

Imprecise
DebugDataBreak

Loads with address+data match

not implemented

NMI TBD (for errors)

MachineCheck not implemented

Interrupt see Section 2.4, "Interrupts"

Deferred Watch not implemented

Debug
InstructionBreak

Watch Ifetch not implemented

Address Error Ifetch

TLB Refill Ifetch

TLB Invalid Ifetch

Cache Error Ifetch

Bus Error Ifetch

SDBBP

Coproc Unusable

Reserved Inst

Execution
Exception

Overflow, Trap, BREAK, SYSCALL

Precise Debug
DataBreak1

Loads with address match only. All stores

Watch not implemented

Address Error Data

TLB Refill Data

TLB Invalid Data

TLB Modified Data

Cache Error Data

Bus Error Data

Precise Debug
DataBreak2

not implemented (Loads with address+data match are always
treated as Imprecise Debug DataBreak exceptions)

2.5.1. Reset Context Wait and EJBOOT

Stream Processor Lexra Inc. Proprietary & Confidential 15
Rev 2.1 August 1, 2002 DO NOT COPY

2.5.1. Reset Context Wait and EJBOOT

When the CPU is reset, only Context 0 is enabled. This is accomplished by the hardware initializing the value
of the DC bits in the CXCTRL register so that all contexts other than 0 are disabled. It is the responsibility of
the Reset handler that runs in Context 0 to enable the other contexts by clearing their DC bits. When its DC
bit is cleared, each of the other contexts will begin execution of the Reset handler. As indicated in Table 2
each context has its own ErrorEPC (used to “return” from the reset exception) and each context can control
where it begins execution after it completes the Reset handler.

As described in Section 3.3, the CPU can optionally begin execution at the time of reset by fetching
instructions in debug mode from the EJTAG probe. From the CPU point of view, this functionality is similar
to the EJBOOT feature of EJTAG 2.5. The extensions to EJTAG 2.0 that control this feature are described in
Chapter 15. As in the case of all Reset exceptions, only Context 0 begins execution. Hence only Context 0
enters debug mode in this case. The other contexts begin execution at the standard Reset exception vector in
normal mode after their DC bits are cleared.

2.5.2. DM Wait and EJTAG (Debug) Exceptions

The LX4580 CPU implements a DM Wait feature which prevents more than one context from executing in
Debug mode at any given time. As noted in Table 2 there is only one instance of various CP0 registers (such
as DESAVE) used to support Debug mode. Furthermore, the EJTAG probe software is unlikely to support
intermixed accesses to the Dmseg and Drseg regions. Therefore, after one context begins executing in Debug
Mode (due to an EJTAG exception) any other context which takes an EJTAG exception is placed in the DM
Wait queue. While in the DM Wait state, the context does not issue any instructions. When the first context
leaves Debug Mode (by executing a DERET instruction), the next context in the DM Wait queue resumes
execution (in the EJTAG exception handler).

Furthermore, the EJTAG implementation for the LX4580 CPU has an additional feature which optionally
allows an EJTAG exception in one context to immediately place all other contexts in the CPU into the DM
Wait queue, suspending their execution. When the first context leaves Debug Mode (by executing its
DERET), the other contexts resume execution (at whatever point they were suspended). This feature allows
the EJTAG probe software to gain control of the entire CPU without needing to put all contexts into Debug
Mode simultaneously.

An additional feature of the LX4580 CPU to be noted is that Debug Mode for a context overrides the DC bit
for that context. This allows the EJTAG probe to force a context to enter Debug Mode (using the DINT
EJTAG exception) even if the context is disabled for normal execution. It also prevents a context that is
executing in Debug Mode from being disabled by another context, which could hang the EJTAG probe.

2.6. Address Spaces

Supervisor Mode isnot supported.

Kseg2 is supported (instead of Ksseg).

36 Physical Address bits are supported.

The only Memory access types supported are values 2 (uncached) and 3 (cacheable).

Kseg0 can be either uncached or cacheable according to the K0 field of the CP0 Config register.

When the ERL field of the CP0 Status register has value 1, Kuseg is an unmapped, uncached segment and all
2**31 bytes are translated. This is the situation upon reset.

Chapter 2. MIPS32 Implementation Specifics

16 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

As noted in the CP0 Config register MT field, at reset, the TLB can be disabled in which case the Fixed
Mapping Table will be used. In this case, as noted in the CP0 Config register KU,K23 field definitions,
kuseg, kseg2 and kseg3 will always be cacheable (field value 3).

2.6.1. Non-Coherence for Different Access Types

The MIPS32 architecture specifies that results of loads or stores to a location using one memory access type
that follow loads or stores to the same location using a different memory access type are unpredictable in
general. The architecture states that an implementation specific sequence can enforce coherence between
such accesses. For the LX4580 CPU, the only two access types are cacheable and uncached. By performing a
CACHE instruction with the Hit Writeback Invalidate operation between the accesses, the coherence can be
enforced. The address used for the CACHE instruction may have either the cacheable or uncached access
type. This implies that the required CACHE instruction may use the address from either of the accesses so
that it can be done immediately after the first access or immediately before the second access, in either case
using the same base register and offset as the access in question.

2.7. Endianness

At reset BigEndian is always selected. Reverse endianness is not supported. In MIPS32 Release 2 the WSBH
instruction can be used when endian swap is needed. See Section 2.11.3.

2.8. EJTAG

The CPU generally supports the EJTAG 2.0 specification in a manner consistent with the MIPS32
architecture. The exceptions to this are in the following areas:

• PC Trace
• Data Break Exceptions
• HMT Extensions

For PC Trace, the EJTAG 2.0 concept of external trace signals is not supported. This is due to the higher
speed of the CPU and the multi-context nature of the LX4580 CPU pipeline. Instead, an on-chip trace buffer
is used to capture information about instruction execution. The controls for the trace buffer allow tracing of a
single context or tracing of all contexts of the LX4580 CPU simultaneously. The trace buffer and associated
controls are described Section 15.2.8.

For Debug Data Break exceptions, the CPU implements the concept of Precise Data Breaks that is defined in
the EJTAG 2.5 specification. In particular, for Loads, only the address match applies. For Stores, both the
address and data match (if enabled) apply. Imprecise Data Breaks, which would require data match for
Loads, are not supported because the LX4580 CPU often resolves Loads for a given context in the
background of execution of other contexts.

As noted in Section 2.5.2 only a single context of the LX4580 CPU is allowed to execute in Debug Mode at
any given time. Furthermore, if the EJTAG Control Register “Disable Other Contexts” (DOC) bit is set when
any context enters Debug Mode, all other contexts suspend execution. As indicated in Table 2 each context
has its own CP0 Debug and DEPC registers to provide independent context control of EJTAG and to hold the
DEPC for each context that is in DM Wait state. On the other hand, there is only one DESAVE register that is
shared by all contexts since it is only needed during execution in Debug Mode.

For both Instruction and Data Breaks, the match logic is extended to include an optional match against the
context number.

For EJTAG Breaks, an additional field in the EJTAG Control Register is used to indicate whether all contexts
are to be interrupted, or just a specific context is to be interrupted.

2.9. CP0 Hazards

Stream Processor Lexra Inc. Proprietary & Confidential 17
Rev 2.1 August 1, 2002 DO NOT COPY

2.9. CP0 Hazards

In all cases the implementation meets or exceeds the “typical” requirements for instruction spacing to
avoid CP0 hazards as described in the MIPS32 architecture specification.

2.10. Performance Counters

The LX4580 CPU implements four performance counters, as noted in Table 2. Each counter can select from
the same set of events to count, and each counter can count the selected event for all contexts, or for one
particular context. The format of the counters and their control registers follows the MIPS32 Release 2
specification, with one Lexra extension (the CntxSel field) in bits 13:11 of the control registers, as defined in
Table 6. The Event field (bits 10:5) of the MIPS32-specified counter control registers is defined in Table 7.

Table 6: CntxSel (bits 13:11) Field of PerfCnt Control Registers

Value (bits 13:11) Context to Count

000 Count Events for all Contexts

100 Count Events for Context 0

101 Count Events for Context 1

110 Count Events for Context 2

111 Count Events for Context 3

others reserved

Table 7: Event Field of PerfCnt Control Registers

Value (bits 10:5) Event Counted

000000 retired instructions

000001 replayed instructions

000010 instruction fetch (valid new D-stage)

000011 Icache instruction fetch

000100 Icache miss

000101 Uncached instruction fetch

000110 Dcache load

000111 Dcache store

001000 Dcache load miss

001001 Dcache store miss

001010 Dcache load or store

001011 Dcache load or store miss

Chapter 2. MIPS32 Implementation Specifics

18 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

2.11. Release 2 Architecture Support

The LX4580 CPU supports the MIPS32 Release 2 Architecture Changes. Those changes include numerous
optional and implementation dependent features as well as several required features. The following sections

001100 Uncached load or store

001101 Writeback for replacement

001110 Writeback for inquiry

001111 Invalidate for inquiry

010000 Nop for inquiry

010001 Pipeline stall for any reason

010010 Pipeline stall for Icache fill

010011 Pipeline stall for Dcache fill

010100 Pipeline stall for store from store queue

010101 Pipeline stall for write buffer full

010110 execution exception (Ov,Trap,BREAK,SYSCALL)

010111 TLB refill exception - Instruction

011000 TLB refill exception - Data

011001 TLB invalid exception - Instruction

011010 TLB invalid exception - Data

011011 TLB modified exception

011100 any TLB exception

011101 ITLB miss

011110 DTLB miss

011111 Interrupt

100001 any exception

100010 Store Conditional instruction (pass or fail)

100011 Store Conditional Fail

others reserved (no count)

Table 7: Event Field of PerfCnt Control Registers

Value (bits 10:5) Event Counted

2.11.1. Release 2 Interrupt Modes, Exceptions, Shadow GPRs

Stream Processor Lexra Inc. Proprietary & Confidential 19
Rev 2.1 August 1, 2002 DO NOT COPY

provide detail on the LX4580 implementation. As a quick summary, the following is a list of all of the
Release 2 features and their support in the LX4580 CPU:

• Vectored Interrupts (not supported)
• External Interrupt Controller (not supported)
• Programmable Exception Vector Base (supported)
• Atomic Interrupt Enable/Disable (supported)
• Disable Count register (supported)
• GPR Shadow Registers (not supported)
• Field, Rotate, Shuffle Instructions (supported)
• Hazard Barrier Instructions (supported)
• User Hardware Register access (supported)
• CP0 register changes (supported)
• 64-bit FPU (not supported)
• 1KB page size (not supported)

2.11.1.Release 2 Interrupt Modes, Exceptions, Shadow GPRs

The Release 2 Architecture defines a Compatibility interrupt mode which is equivalent to the Release 1
interrupt mode. This is the only Release 2 interrupt mode supported by the LX4580 CPU. The Vectored and
External Interrupt Controller (EIC) modes are not supported. GPR Shadow Registers are not supported.

As noted in Section 2.4, the Timer and Performance Counter interrupts are presented as IP7. Therefore the
IPTI and IPPCI fields of the Release 2 IntCtl register have that value. The other fields of IntCtl are always
zero. The Cause register fields TI and PCI are implemented to provide a direct indication of Timer and
Performance Counter interrupts. Since EIC mode is not supported, the Status and Cause registers never use
the IPL and RIPL formats for interrupt priority levels.

Because there is only a single Count register shared by all contexts, the DC (Disable Count) bit in the Cause
register only has an effect if all contexts set their individual DC bit. Otherwise the Count register continues to
run.

The Release 2 EBase register is fully implemented. Within the EBase register, the least significant bits of the
CPUNum field reflect the context number within the LX4580 CPU. That is, each context reads a unique
CPUNum value from its EBase register. There is one EBase register per context so that each can
independently set its exception base value.

The Release 2 EI and DI (Enable and Disable Interrupt) instructions are implemented as required.

Because Shadow Register and Vectored Interrupts are not implemented, the SRSCtl register is always read as
zeroes and SRSMap is not implemented. Furthermore, the RDPGPR and WRPGPR instructions simply
move the contents of one GPR to another within the executing context’s GPR register set.

2.11.2. Hazard Barrier Instructions

The Release 2 instructions EHB, JALR.HB, JR.HB and SYNCI are implemented by the LX4580 CPU to
eliminate execution and instruction hazards as described in the Release 2 Architecture.

Chapter 2. MIPS32 Implementation Specifics

20 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

2.11.3. Field, Rotate, Shuffle Instructions

The following Release 2 instructions are implemented as required. It is worth noting that a programming note
in the Release 2 specification indicates how the WSBH instruction can be used to swap endianness.

• EXT Extract Bit Field
• INS Insert Bit Field
• ROTR Rotate Right
• ROTRV Rotate Right Variable
• SEB Sign-Extend Byte to Word
• SEH Sign-Extend Halfword to Word
• WSBH Word Swap Bytes Within Halfwords

2.11.4. User Access to Hardware Registers

The Release 2 instruction RDHWR (Read Hardware Register) is implemented as required. The CP0 register
HWREna is also implemented as required to conditionally enable a User mode program to read one or more
of the defined registers. The values that are supplied when the RDHWR instruction is executed (if the
relevant register is enabled for reading) are shown in Table 8.

2.11.5. CP0 Register Changes

All of the changes and additions to CP0 registers that are associated with the Release 2 architecture are
reflected in Table 2, "Standard CP0 Registers". Beyond the changes and additions associated with Release 2
features that are described in other sections of this document, a few more CP0 register changes are included
in the LX4580 CPU to be compliant with the Release 2 architecture.

In particular, the Config, Config2, and Config3 have a few more fields defined. Since the Config2 and
Config3 fields all refer to features that are not supported in the LX4580 CPU, these registers are not
implemented.

The optional WatchHI register has some fields added, but since the LX4580 does not implement the Watch
registers, these are not implemented.

The PerfCnt control registers have a W-bit added which only applies to MIPS64 implementations and so is
always 0 on the LX4580 CPU.

Table 8: Hardware Register Values

Number Name HMT Implementation Specific Information

0 CPUNum 4 Same as CP0 EBASE.CPUNum

1 SYNCI_Step 1 64

2 CC 1 Same as CP0 Count register

3 CCRes 1 1

2.11.6. 64-bit Coprocessor (FPU)

Stream Processor Lexra Inc. Proprietary & Confidential 21
Rev 2.1 August 1, 2002 DO NOT COPY

2.11.6. 64-bit Coprocessor (FPU)

Since the LX4580 does not support any coprocessors, the Release 2 changes to support 64-bit coprocessors,
and in particular a 64-bit FPU, are not implemented. The instructions associated with this Release 2 feature
will all take Coprocessor Unusable exceptions as required.

2.11.7. 1KB Pages

The Release2 architecture extends the PageMask register by a pair of bits and several other CP0 registers are
extended or modified if 1KB pages are to be supported. Also, if 1KB pages are to be supported, a PageGrain
register is required.

The LX4580 CPU does not support the 1KB page feature. Therefore, the PageGrain register is not
implemented and the changed formats of other registers are not implemented. The extra two bits of
PageMask are hard coded to 2#11 as seems to be required.

Chapter 2. MIPS32 Implementation Specifics

22 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 23
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 3. Reset (RST)

3.1. Reset Overview

A comprehensive reset strategy provides reliable initialization of the Stream Processor.

The Stream Processor employs a locally sampled reset strategy - synchronous resets registered at the block
level.

The reset strategy ensures the following:

• Complete initialization of the Stream Processor by the assertion of one external pin.

• Reset debug by EJTAG. All CPUs can be placed in a state whereby they will all receive a
debug exception when reset and will fetch their reset vector from EJTAG probe space.

• Reset of flip-flops in multiple clock domains. For this reason reset must remain asserted
until it is registered in each domain in the design.

• Due to the synchronous nature of resets all clocks must be running when reset is asserted.
This includes external interface clocks.

• When reset is asserted all block-level signals must go to an inert state (e.g. for a bus the
arbiter must have grant de-asserted during resets). This allows blocks in different clock
domains to come out of reset at different times.

• Two external reset pins are provided for power up and debug reset.

• There is a software register (Test and Set register) in uncacheable space which is used to
determine which processor will be the boot master.

Figure 3: Reset Overview

CRESET_N

Block X Clk

Block Y Clk

Block X (not a CPU)

Block Y (not a CPU)

RESET_D1_YR_N

RESET_D1_XR_N

RESET_N

RESET_N

Clk

Clk

JTAG_RST_N

CPU

RESET_D1_R_N

Clk
CPUCLK

EJTAG

SYSCLK

RESET_N

PRBENRST_D1_R_N
All other logic

Chapter 3. Reset (RST)

24 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

3.2. Reset Distribution

The reset system is distributed across the design. Each block or CPU will contain a reset flip-flop which
samples the chip-level reset in its clock domain. The output of the reset flip-flop is fed to all the flip-flops in
that block.

3.3. Reset Operation

A typical multiple CPU cold-boot sequence would be as follows:

1. CRESET_N is asserted.

2. CRESET_N is de-asserted.

3. All CPUs start executing identical software from the reset vector.

4. All CPUs read the Test and Set Register.

5. Due to the nature of the Test and Set Register only one CPU will read it as zero. This CPU will
become the boot master.

6. The boot master will initialize the multiple CPU environment and the Stream Processor periph-
erals. The other CPUs that did not read a zero from the Reset Register will be executing soft-
ware loops.

7. When the boot master has finished the initialization of the Stream Processor it sends inter-pro-
cessor interrupts to each of the other CPUs. The other CPUs will start to execute the appropri-
ate interrupt handler after which they operate normally.

A typical multiple CPU EJTAG boot sequence would be as follows:

1. CRESET_N is asserted.

2. CRESET_N is de-asserted.

3. The EJTAG probe is connected to each processor in turn setting the ProbeEn bit in each CPU’s
EJTAG Control Register.

4. The Probe then asserts JTAG_RST_N. This resets everything in the Stream Processor apart
from the EJTAG ProbeEn flop.

5. JTAG_RST_N is de-asserted and all CPUs jump to the debug exception vector at 0xFF200200
from where the system is under EJTAG probe control.

3.4. Reset Registers

Stream Processor Lexra Inc. Proprietary & Confidential 25
Rev 2.1 August 1, 2002 DO NOT COPY

3.4. Reset Registers

3.4.1. TestAndSet Register (TAS)

Name: TestAndSet Register (TAS)
Size: 32 bits.
Address: TBD - uncached
SW Init: None.
Restrictions: None.

3.5. Reset External SP-1 Interfaces

INTERNAL USE. The TAS register is implemented in the System Control logic. The register description
should be moved to that section, and a cross-reference included here.

31 0

TAS Reserved

Field Bits Description R/W Reset

TAS 31 After a read this field changes to 1.
Writes load the register with value written.

R/W 0

Table 9: Reset External Interface

Signal Name Direction Description

CRESET_N input Cold Reset.

JTAG_RST_N input Connection from the EJTAG probe.

Chapter 3. Reset (RST)

26 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 27
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 4. Interrupts (INT)

4.1. Interrupt Overview

The Stream Processor provides a variety of interrupt mechanisms to allow CPU contexts to be efficiently
signalling by external sources, integrated devices and other CPU contexts.

The following types of interrupts are supported:

• (6) Edge sensitive interrupts from integrated devices.

• (16) Edge sensitive cross interrupts from CPU context to CPU context.

• (4) Level sensitive external interrupts.

• (1) Level sensitive hardware error interrupt.

A CPU context can be directly interrupted by crossbar message from an integrated device, or via crossbar
message or interrupt line from the Interrupt Reflector and Router (IRR).

The edge sensitive device and cross interrupts use a crossbar message to route an interrupt request from the
interrupt source to a single CPU context. The contents of the CPU’s XBI and CP0 registers determine how
the interrupts are honored by the target.

The level sensitive external and error interrupts are globally distributed throughout the Stream Processor and
can be observed by any number of CPU contexts according to the contents of the CP0 registers.

The external interrupts are globally maskable via a register within the IRR.

Software can observe pending interrupts by polling registers within the LX4580 CPU and throughout the
Stream Processor, even when the interrupt is disabled through the corresponding mask register.

Figure 4: System View of Interrupt

CPUXBAR

Interrupt
Reflector &

XBAR
Devices

Router

External Interrupts

Stream Processor

External
Interrupts

Message
Interrupts

Mask

Hardware Error InterruptOR

Cross-
Interrupt

Requests

Chapter 4. Interrupts (INT)

28 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

4.2. Interrupt Architecture

The interrupt architecture details are shown in Figure 5.

4.2.1. External Interrupts

External interrupts are passed through the IRR where they can be globally masked. The result is then passed
to all CPUs. The interrupts are synchronized at the CPU boundary. The output of the synchronizer is the
source of the read-only level-sensitive interrupt pending flags in the XBI EXT_IntPend register. (See
Section 8.7.12.) The mask from the XBI EXT_IntMask register is ANDed with the interrupt pending flags.
(See Section 8.7.13.) The result is reduction ORed and determines the state of the IP6 bit in the CP0 Status
register.

4.2.2. Device Interrupt Messages

Devices interrupt a CPU context via the Interrupt request (IN) crossbar message. At the CPU’s crossbar
interface the message is converted to one of six edge sensitive device interrupt events. The device interrupt
events are captured in the XBI DEV_IntPend register. (See Section 8.7.10.) The mask bits from the XBI
DEV_IntMask register are ANDed with the device interrupt flags in DEV_IntPend. (See Section 8.7.11.) The
result is reduction ORed and determines the state of the IP3 bit in the CP0 Status register.

When a device interrupt event is captured in the DEV_IntPend register, the CPU sends an Interrupt
Acknowledge reply (INA) crossbar message to the device that requested the interrupt.

4.2.3. CPU Cross Interrupt Messages

Software may send an interrupt to any context on any CPU by executing an uncached store word instruction
that specifies the address of the Interrupt Reflector (IRR). The contents of the word being stored identify the

Figure 5: Interrupt Architecture

n

CPU
Crossbar

IRR

XBAR
Devices

External Interrupts

Stream Processor

External
Interrupts

4 4

Masks

4

4

CPUInt
Masks

Pend

4

Masks

4

DeviceInt

16

Masks

Pend
8

Sync

IP6

IP3

IP2

Write
Buffer

Uncached
Store

Crossbar
Interface

8

16

Error
Conditions

Sync

IP4Hardware Error Interrupt

4.2.4. Hardware Error Interrupt

Stream Processor Lexra Inc. Proprietary & Confidential 29
Rev 2.1 August 1, 2002 DO NOT COPY

CPU context which is the target of the interrupt. The store word instruction generates a Write Word (WW)
crossbar message to the IRR.

The IRR in turn interrupts the target CPU context by sending a crossbar Interrupt Request (IN) message to
the CPU. At the target CPU’s crossbar interface, the message is converted to one of sixteen edge sensitive
cross interrupt events. The interrupt events are captured in the XBI CPUX_IntPend register. (See
Section 8.7.8.) The mask bits from the XBI CPUX_IntMask register are ANDed with the device interrupt
flags in CPUX_IntPend. (See Section 8.7.9.) The result is reduction ORed and determines the state of the IP2
bit in the CP0 Status register.

When a cross interrupt event is captured in the CPUX_IntPend register, the target CPU sends an Interrupt
Acknowledgement reply (INA) crossbar message to the Interrupt Reflector, which in turn sends a Write Sub-
Line Acknowledgement reply (WSA) crossbar message to the CPU that originally requested the interrupt.
Therefore, software that sends a cross interrupt can use the SYNC instruction to verify that the interrupt is
pending at the target.

4.2.4. Hardware Error Interrupt

Hardware errors, such as an SRAM parity error, are detected throughout the Stream Processor as described in
Chapter 17. Each module supplies an error interrupt signal that is asserted when an error condition has been
detected within the module and the generation of an interrupt for that error is enabled. When one or more of
the module-specific error signals transitions high, a priority encoded value representing the error is captured
in the IRR_ModuleErrorCapture register, and an error flag in this register is also set. This flag determines the
state of the IP4 in the CP0 Status registers of all CPUs. See Section 4.3.3 for more details on the
IRR_ModuleErrorCapture register.

4.3. Interrupt Registers

4.3.1. IRR External Interrupt Master Mask Register (IRR_EIMM\)

Name: External Interrupt Master Mask Register (IRR_EIMM)
Size: 4 bits.
Address: IRR_Base + <TBD>
Restrictions: None.

31:4 3:0

Reserved XIMM

Field Bits Description R/W Reset

XMIM 3-0 Interrupt line enabled if set. Bit 0 masks INT0 etc. R/W 0

Chapter 4. Interrupts (INT)

30 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

4.3.2. IRR CPU Cross Interrupt Register (IRR_CCI)

Name: Inter-CPU Interrupt Register (IRR_CCI)
Size: 32 bits.
Address: IRR_Base + <TBD>
Restrictions: None.

31:4 3:0

Reserved TGTid

Field Bits Description R/W Reset

TGTid 3:0 CPU GTid of interrupt target W 0

4.3.3. Module Error Capture

Stream Processor Lexra Inc. Proprietary & Confidential 31
Rev 2.1 August 1, 2002 DO NOT COPY

4.3.3. Module Error Capture

Name: IRR_ModuleErrorCapture
Size: 32 bits.
Address: IRR_Base + <TBD>
SW Init: None.
Restrictions: None.

31 30 29:4 3:0

Err MultiErr 0 ErrModule

Field Bits Description R/W Reset

Err 31 Indicates an error condition has been captured.
0 - No error condition has been captured.
1 - An error condition has been captured in ErrModule.
To clear the contents of this register, software writes a
zero to this register field. This should be done after each
individual module’s error registers have been interro-
gated and cleared. If an error condition remains pending
when zero is written to this field, the error condition is
re-sampled and captured in this register.

R/W 0

MultiErr 30 Indicates multiple error conditions are present.
0 - Multiple error conditions have not been detected.
1 - Multiple error conditions have been detected. The

module that reported the first error condition is indi-
cated in the ErrModule field.

R 0

ErrModule 3:0 Encoded value representing the first module that
reports an error via its ERR_INT output. Valid only if the
Err field is 1.

0 - Memory Subsystem 0
1 - (not used)
2 - Memory Subsystem 1
3 - (not used)
4 - CPU 0
5 - CPU 1
6 - CPU 2
7 - CPU 3
8 - device 0
9 - device 1

10 - device 2
11 - device 3
12 - device 4
13 - device 5
14 - device 6
15 - device 7

If more than one module signals an error in the same
system clock cycle, the lowest numbered module that
signals an error is reported.

R 0

Chapter 4. Interrupts (INT)

32 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

4.4. Interrupt External SP-1 Interfaces

Table 10: Interrupt External Interface

Signal Name Direction Description

INT0_N input External Interrupt Line 0. Active low.

INT1_N input External Interrupt Line 1. Active low.

INT2_N input External Interrupt Line 2. Active low.

INT3_N input External Interrupt Line 3. Active low.

Stream Processor Lexra Inc. Proprietary & Confidential 33
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 5. Address Space

5.1. Address Space Overview

The Stream Processor’s address space defines the location of SDRAM, controllers and external devices
within the Stream Processor’s 64 GByte (36-bit address) physical address range. Applications can limit the
physical address space to 4 GBytes for hardware and software that employ 32-bit physical addressing. All
devices and memory that are attached to the crossbar are globally accessible from all processors.

Two spaces are defined to support boot (such as ROM) and control accesses (such as EJTAG, DMA
controllers and configuration registers). These spaces have a fixed size and location.

Additional spaces may also be defined for access to external devices that are attached to the Stream Processor
through its PCI-X and Generic I/O (GIO) interfaces.

Figure 6 illustrates the domains of logical and physical addressing within the Stream Processor.

The Stream Processor’s address space provides the following characteristics:

• 36-bit physical addresses for a total of 64 GBytes of addressable resources.

• Optionally constrained to a 32-bit physical address subset.

• SDRAM address space.

• Kseg1 boot space.

• Kseg0/kseg1 control space for integrated controllers, configuration and status.

• EJTAG debug mode space (dmseg, drseg).

• External address spaces for access to resources through PCI-X and GIO.

• Error detection for access outside of defined address spaces.

Figure 6: Address Space Overview

MMUCPU
core

DMA
controllers

L1
caches

DMA
controller

XB
I/F

10/100/1000
Ethernet

PHYs

PCI Bus

Memory
Subsystem

L2 cache

Coherency

SDRAM I/F

SDRAM

crossbar
(XB)

Peripheral
Interface

I2C

logical
addresses

physical
addresses

PCI
bridge

MACs Serial

GIO

memory
to memory

DMA

Chapter 5. Address Space

34 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

5.2. Address Space Size

The Stream Processor supports a 36-bit physical address space (64 GBytes). Within a Stream Processor CPU,
the MMU translates 32-bit logical addresses into 36-bit physical addresses prior to referencing the CPU’s
internal caches or resources outside of the CPU.

Applications need not take advantage of the 36-bit physical address capability. All of the Stream Processor
internal resources, such as configuration registers and integrated devices, are located at fixed addresses that
fall within the low 4 GBytes of the address space. Application-specific resources such as SDRAM and
devices attached to the Stream Processor’s PCI-X interface can also be located within the low 4 GBytes of the
address space.

5.3. Physical Address Space Decoding

Figure 7 shows how the Stream Processor’s physical address space is decoded. Certain spaces are fixed, and
have the highest priority in the decode logic. Other spaces are configurable and are decoded in the priority
order shown. Address spaces may overlap. A space with higher priority of decode may create a “hole” in
lower priority decoded spaces.

See Section 8.7 for a description of the address space configuration registers which apply to steps 2-5 of the
diagram.

Figure 7: Address Space Decoding

Fixed spaces:

f ffff ffff

0 ff40 0000

(open)

0 ff3f ffff

0 ff20 0000

EJTAG

0 ff1f ffff

0 2000 0000

(open)

0 1fff ffff

0 1fc0 0000

Boot

0 1fbf ffff

0 1f80 0000

Control

0 1f7f ffff

0 0000 0000

(open)

PCI-X region B:
Up to 64 GB within the 64

GB physical address space.

Generic I/O region:
Up to 4 GB within the 64 GB

physical address space.

PCI-X region A:
Up to 64 GB within the 64

GB physical address space.

SDRAM:
Up to 8 GB starting at
physical address 0.

signal address error

reachable
via kseg0

and kseg1

2

3

4

5

6

1

5.4. Boot Space

Stream Processor Lexra Inc. Proprietary & Confidential 35
Rev 2.1 August 1, 2002 DO NOT COPY

5.4. Boot Space

The boot space is located at 16#0_1fc0_0000 through 16#0_1fff_ffff. The BEV flag of theCPU’s Status
register is set to 1 by a reset, which causes all CPU exception vectors except EJTAG to be mapped within the
boot space.

Generic I/O user device 0 is dedicated to the boot space, and is automatically configured by reset to
communicate with a ROM attached to the Stream Processor’s GIO interface. (See Section 14.3.) When a
CPU is brought out of reset, it begins fetching instructions from the logical kseg1 address 16#bfc0_0000,
which corresponds to physical address 16#0_1fc0_0000.

The operating system startup software that runs from the boot space typically configures the SDRAM
memory space. After the operating system has copied the appropriate program code to low memory, the
operating system may clear the BEV flag in the CP0 Status register. This causes some of the exception
vectors to be mapped to locations starting at logical address 16#8000_0200, which corresponds to physical
address 16#0_0000_0200.

5.5. Control Space

The control space is located at 16#0_1f80_0000 through 16#0_1fbf_ffff and therefore is accessible by a CPU
via the unmapped and uncached kseg1 segment. Software accesses integrated devices through this space to
configure the device and to directly interact with the device.

Most of the Stream Processor’s integrated devices are assigned a 64 KByte sub-space within control space, as
defined in Table 11. Some devices with smaller address space requirements share a 64 KByte control space.
The definition of resources within the 64 KByte space is specific to the device.

The operating system may employ the MMU to enforce device access privileges to user mode application
code. With an MMU page size of 4 KBytes, access can be given to 16 distinct subsets of a given device’s
functions. For example, the head and tail window registers of DMA controller’s queues are located in a
separate 4 KByte page from other DMA control registers. All such MMU pages should specify the uncached
access type.

Table 11: Control Space Organization

Control
Space

Symbol Address Range Description
See
Section

MAC0 MAC0_Base 16#0_1f80_0000 to
16#0_1f80_FFFF

Ethernet MAC interface 0 configura-
tion, status and DMA registers.

10.15, 11.4

MAC1 MAC1_Base 16#0_1f81_0000 to
16#0_1f81_FFFF

Ethernet MAC interface 1 configura-
tion, status and DMA registers.

10.15, 11.4

MAC2 MAC2_Base 16#0_1f82_0000 to
16#0_1f82_FFFF

Ethernet MAC interface 0 configura-
tion, status and DMA registers.

10.15, 11.4

PCI PCI_Base 16#0_1f83_0000 to
16#0_1f83_FFFF

PCI-X bridge configuration, status
and DMA registers.

10.15, 12.6

MM MM_Base 16#0_1f84_0000 to
16#0_1f84_FFFF

Memory to memory DMA 10.15

XI XI_Base 16#0_1f85_0000 to
16#0_1f85_FFFF

Cross Interrupt functions. 13.2

ST0 ST0_Base 16#0_1f85_2000 to
16#0_1f85_3FFF

System timer 0. 13.3

Chapter 5. Address Space

36 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

5.6. EJTAG Space

In debug mode, the EJTAG space is reserved for EJTAG. When the EJTAG probe is enabled the CPU detects
any accesses to EJTAG space and redirects the transaction to the EJTAG hardware. When the probe is
disabled, the decoding of EJTAG reserved space is disabled. Any transaction that would have targeted the
EJTAG space in this situation will be directed to another portion of the address space according to the decode
priority shown in Figure 7.

It is strongly recommended that applications not use the EJTAG space for any reason, even when a debug
probe is disabled or is not present.

5.7. Generic I/O Space

One Generic I/O (GIO) space may be configured through the XBI control registers. (See Section 8.7.) All
accesses within this space are directed to the SP-1’s GIO interface. Further decoding within the interface can
differentiate addresses for up to four separate devices. (See Chapter 14.)

5.8. PCI-X Space

Two PCI-X spaces may be configured through the XBI control registers. (See Section 8.7.) Typically one of
the spaces is used to access uncacheable control registers within the PCI-X Bridge or on the PCI-X bus, and
the other space is used to access large cacheable memories. (See Chapter 12.)

5.9. SDRAM Space

The top of SDRAM space is configured through the XBI control registers. (See Section 8.7.) The SDRAM
space is accessible from all CPU contexts, starting at the physical address 0 and ending at the configured top
of SDRAM. Depending on the size of SDRAM, a context may access all or part of SDRAM through the
kseg0 and kseg1 logical address ranges.

The special purpose GIO, control and EJTAG spaces may overlap with the SDRAM space. In this case, the
special spaces take priority, and SDRAM located at these addresses is not accessible.

ST1 ST1_Base 16#0_1f85_4000 to
16#0_1f85_5FFF

System timer 1. 13.3

I2C I2C_Base 16#0_1f85_6000 to
16#0_1f85_7FFF

I2C controller. 13.4

UART UART_Base 16#0_1f85_8000 to
16#0_1f85_9FFF

Serial port controller. 13.6

GIOC GIOC_Base 16#0_1f85_A000 to
16#0_1f85_BFFF

Generic I/O configuration registers. 14.7

AS AS_Base 16#0_1f88_0000 to
16#0_1f88_FFFF

Address space configuration. 8.7

MS MS_Base 16#0_1f89_0000 to
16#0_1f89_FFFF

Memory subsystem configuration
and status.

9.13, 9.14,
9.15

Table 11: Control Space Organization (Continued)

Control
Space

Symbol Address Range Description
See
Section

5.10. Address Space Configuration Registers

Stream Processor Lexra Inc. Proprietary & Confidential 37
Rev 2.1 August 1, 2002 DO NOT COPY

5.10. Address Space Configuration Registers

The address space configuration registers are implemented within each CPU crossbar interface and are
described in Section 8.7.

5.11. Error Detection

The Stream Processor fully decodes the address of all access made by the CPUs and DMA controllers. All
illegal addresses result in a bus error condition being signaled to the originator. See Chapter 17, "Error
Detection and Reporting".

Chapter 5. Address Space

38 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 39
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 6. Crossbar (XB)

6.1. Crossbar Overview

The crossbar (XB) provides the on-chip interconnect that allows the Stream Processor’s LX4580 CPUs,
DMA controllers, memory and I/O devices to communicate with each other. Crossbar transfers are initiated
as a result of events such as a cache miss or the execution of an uncached load or store instruction.

Since Stream Processor software does not interact directly with the crossbar, the material in this chapter is
provided to allow users to optionally gain a greater understanding of how the Stream Processor functions.

The crossbar supports the following types of operations:

• Operates at the SP-1’s system clock speed (1/2 the CPU clock speed).

• High bandwidth interfaces transfer 64 bits per cycle, full duplex.

• Distributed queuing to reduce head-of-line blocking.

• Word and sub-word read and write transfers (1, 2, 3 or 4-byte).

• Line read and write transfers (64-byte).

• Coherency signalling.

• Error signalling.

• Interrupt messages for processor-to-processor and device-to-processor signalling.

Figure 8: Overview of Crossbar

CPU
(4)

MII/GMII
with DMA (3)

Memory Move
DMA

PCI-X
with DMA Crossbar

(XB)

Memory
Subsystem (2)

L2 cache

Coherency

SDRAM I/F

System
Control

Stream Processor

Chapter 6. Crossbar (XB)

40 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

6.2. Crossbar Architecture

The organization of the crossbar is shown in Figure 9. Each crossbar sub-block includes muxes, arbitration
logic and queues. The details of these structures are discussed in Section 6.4.

Table 12 lists the agents that are attached to the crossbar.

Figure 9: Crossbar Architecture

Table 12: Crossbar Agents

Agent Description

p0-3 (4) Processors with L1 caches.

d0-2 (3) 10/100/1000 Ethernet MAC and DMA engine.

d3 (1) PCI-X Master/Slave Bridge and DMA engine.

d4 (1) Memory to memory DMA engine.

d5 (1) Cross-interrupt reflector.

(1) Timers.

(1) I2C interface.

(1) UART.

(1) Generic Input/Output (GIO) configuration registers.

d6 (1) Generic Input/Output (GIO) interface.

d7 (1) PCI-X external bus target.

m0-1 (2) Memory Subsystem (MS) with coherency engine, L2 cache
and SDRAM controllers.

4x4CPUs (4)

5x3

MAC
with DMA (3)

Memory
Subsystems

(2)

PCI-X
with DMA

Mem Move DMA

mux
and

fanout

crossbar
agent

64-bit
full duplex
connection

UART

I2C

1x5

Timer

Cross Int

Generic I/O

crossbar
sub-block

6.3. Crossbar Messages

Stream Processor Lexra Inc. Proprietary & Confidential 41
Rev 2.1 August 1, 2002 DO NOT COPY

6.3. Crossbar Messages

The crossbar provides a point-to-point messaging protocol. Anagent connected to the crossbar may operate
as aninitiator, as atarget, or both. An initiator sends a message to a specific target, which in turn may act as
an initiator by sending one or more new messages, as shown in Figure 10.

Tables 13 through 16 summarize the crossbar messages types. A complete transaction requires one or more
crossbar messages. The originator of the transaction sends the first message of a transaction, typically a
request message. The target sends arequest reply to the originator to complete the transaction. The memory
subsystem’s coherency engine may send one or moreinquiries to CPUs before completing before a
transaction. In this case the CPUs send aninquiry reply back to the coherency engine.

Figure 10: Crossbar Messages

Table 13: Eastbound Request Messages

Type Encoding Source/Destination
Possible
Replies

Message
Length

Meaning

CPU Initiated Line Reads

RL 00 0000 CPU / MS DLS, DLE 1 Read line

CPU / GIO DLE

RLE 01 0000 CPU / MS DLS, DLE 2 Read line with eviction

RLM 00 0001 CPU / MS DLM 1 Read line with intent to modify

CPU / GIO DLM

CPU / PCI DLM

RLME 01 0001 CPU / MS DLM 2 Read line with intent to modify
and eviction

UM 00 0010 CPU / MS UMA, DLM 1 Upgrade line to Modified

CPU / GIO UMA

CPU / PCI UMA

VE 00 0011 CPU / MS none Beat 2 of
RLE or
RLME

Eviction address beat

XB

Target

Initiator

Target
InitiatorWestbound

Message

EastboundMessage

Chapter 6. Crossbar (XB)

42 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

CPU Initiated Line Writes (including CPU CACHE instruction)

WLI 00 0100 CPU / MS, GIO, PCI none 1 Write line, mark Invalid

WLS 00 0101 CPU / MS, GIO, PCI none 1 Write line, mark Shared

LI 00 0110 CPU / MS, GIO, PCI none 1 Invalidate line

DMA and PCI Initiated Line Reads and Writes

RLN 00 0111 DMA, PCI / MS DL 1 Read line with no L2 allocation

WLN 10 0111 DMA, PCI / MS WLA 9 Write line with no L2 allocation

CPU, DMA and PCI Initiated Sub-Line Reads and Writes

RB 00 1000 CPU, DMA, PCI / MS DS 1 Read byte

CPU / d0-6, PCI DS

PCI / d5-6 DS

RH 00 1001 CPU, DMA, PCI / MS DS 1 Read half-word

CPU / d0-6, PCI DS

PCI / d5-6 DS

RT 00 1010 CPU / MS, PCI DS 1 Read tri-byte

RW 00 1011 CPU, DMA, PCI / MS DS 1 Read word

CPU / d0-6, PCI DS

PCI / d5-6 DS

WB 01 1000 CPU, DMA, PCI / MS WSA 2 Write byte

CPU / d0-6, PCI WSA

PCI / d5-6 WSA

WH 01 1001 CPU, DMA, PCI / MS WSA 2 Write half-word

CPU / d0-6, P CI WSA

PCI / d5-6 WSA

WT 01 1010 CPU / MS, PCI WSA 2 Write tri-byte

WW 01 1011 CPU, DMA, PCI / MS WSA 2 Write word

CPU / d0-6, PCI WSA

PCI / d5-6 WSA

Table 13: Eastbound Request Messages (Continued)

Type Encoding Source/Destination
Possible
Replies

Message
Length

Meaning

6.3. Crossbar Messages

Stream Processor Lexra Inc. Proprietary & Confidential 43
Rev 2.1 August 1, 2002 DO NOT COPY

Table 14: Westbound ReqReply Messages

Type Encoding Source/Destination
Message
Length

Meaning

DL 10 0000 MS / DMA, PCI 9 Read line data, no cache

DLS 10 0001 MS / CPU 9 Read line data, install S

DLE 10 0010 MS, GIO / CPU 9 Read line data, install E

DLM 10 0011 MS / CPU 9 Read line data, install M

DS 01 0000 MS / CPU 2 Read sub-line data

UMA 00 0000 MS, GIO / CPU 1 Upgrade ack

WLA 00 0001 MS, GIO / DMA, PCI 1 Line write ack

WSA 00 0010 MS / CPU, DMA 1 Sub-line write ack

d0-6 / CPU

d5-6 / PCI

BE 00 0011 1 Bus error (bad address or size)

Table 15: Westbound Inquiry Messages

Type Encoding
Source/
Destination

Possible
Replies

Message
Length

CPU Actions

II 11 0000 MS / CPU IA 1 Invalidate line; no eviction.

IIE 11 0001 MS / CPU IA
IEA

1 Invalidate line;
If M evict

IDE 11 0010 MS / CPU IA
IEA

1 If E downgrade to S;
If M downgrade to I and evict

IRE 11 0011 MS / CPU IRA 1 If due to WLS downgrade to S,
else downgrade to I;
purge from evict buffer

IN 11 0100 d0-5 / CPU INA 1 Request interrupt

Chapter 6. Crossbar (XB)

44 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

6.3.1. Single Beat Message Format

6.3.2. RLE, RLME Request Message Format

6.3.3. DS, WB, WH, WT, WW Message Format

Data must be presented in its natural byte lane.

6.3.4. DL*, WLN, IEA, IRA Message Format

Table 16: Eastbound InqReply Messages

Type Encoding
Source/
Destination

Message
Length

Meaning

IA 110 000 CPU / MS 1 Inquiry ack

IEA 111 000 CPU / MS 9 Inquiry w/eviction ack

IRA 111 001 CPU / MS 9 Inquiry w/replacement eviction ack

INA 110 001 CPU / d0-5 1 Request interrupt ack

Message Header

Message Header
Eviction Address

Message Header
Data

Message Header

Header addressa

a. For these messages, the low order 6 bits of
the Header address must be zero.

Data Beat 0

Header address + 0x8 Data Beat 1
Header address + 0x10 Data Beat 2
Header address + 0x18 Data Beat 3
Header address + 0x20 Data Beat 4
Header address + 0x28 Data Beat 5
Header address + 0x30 Data Beat 6
Header address + 0x38 Data Beat 7

6.3.5. Message Header, Eviction Address Beat Format

Stream Processor Lexra Inc. Proprietary & Confidential 45
Rev 2.1 August 1, 2002 DO NOT COPY

6.3.5. Message Header, Eviction Address Beat Format

6
63-58

2
57-56

36
55-20

10
19-10

4
9-6

6
5-0

unused Way Addr WestAgent EastAgent Type

Type Message Type; see Section 6.3 (includes class and size)

Eastbound:
00 xxxx 1 beat Request message
01 xxxx 2 beat Request message
10 xxxx 9 beat Request message
110 xxx 1 beat InqReply message
111 xxx 9 beat InqReply message

Westbound:
00 xxxx 1 beat ReqReply message
01 xxxx 2 beat ReqReply message
10 xxxx 9 beat ReqReply message
11 xxxx 1 beat Inquiry message

EastAgent East Side Message Agent
 0000 Memory Subsystem 0 controller
 0001 Memory Subsystem 0 SDRAM
 0010 Memory Subsystem 1 controller
 0011 Memory Subsystem 1 SDRAM
 01xx (reserved)
 1000 device 0
 1001 device 1
 1010 device 2
 1011 device 3
 1100 device 4
 1101 device 5
 1110 device 6
 1111 device 7

WestAgent West Side Message Agent
00xxxxxxxx CPUI (I cache)
01xxxxxxxx CPUD (D cache)
10xxxxxxxx CPUE (EJTAG)
11xxxxxxxx DMA data path
WAgent[7:4] = CPU/DMA number
WAgent[3:0] = context number

Addr Memory address for Cmd.
For line operations (DL*, WLN, IEA and IRA), the low order six bits of the
address must be zero.
For interrupt requests (IN) that are sourced by the interrupt reflector, bit 24
of the message header is 1, and bits 23:20 of the header indicate which
bit to set in the west agent’s CP0 ExtendedIP1 register. For interrupt
requests from any other source, bits 24:20 of the message header are 0.
See Section 4.2.3.

Way Encoded way of L1 tag operation for use in duplicate L1 tag update.
Required with CPU RL, RLE, RLM, RLME, UM, and LI requests.

Chapter 6. Crossbar (XB)

46 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

6.3.6. Data Beat Format

6.3.7. Error Detection and Reporting

Initiators are responsible for detecting address errors that arise if a 36-bit system address does not decode to
an XB target. The method of signaling this error within the initiator is initiator-defined.

Targets may also detect address-related errors as a result of fine-grained decoding of the 36-bit system
address performed by the target. These errors are reported to the original initiator with an error message. The
target of such a message (i.e. the initiator that caused the error) processes the error using a target-specific
mechanism.

6.4. Crossbar Operation

6.4.1. Clocking

The XB operates in the system clock domain. Agents that operate at other speeds are responsible for
frequency matching.

6.4.2. Initiator-Target Relationships

The internal structure of the crossbar is optimized based on the characteristics of the attached agents and the
types of messages that must be supported between agent pairs. Table 17 summarizes the basic message types
possible for all valid initiator-target pairs. In reference to Figure 9, aneastbound message is one that is
sourced from the right side of an initiator. Awestbound message is one that is sourced from the left side of an
initiator.

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

Table 17: Initiator-Target Relationships

Initiator Target Direction Message Sizes (bytes)

p0-3, d0-4, d7 m0-1 eastbound 8, 16, 72

p0-3 d0-5 eastbound 8, 16

p0-3 d6-7 eastbound 8, 16, 72

d7 d5-6 eastbound 8, 16, 72

m0-1 p0-3, d0-4, d7 westbound 8, 16, 72

d0-5 p0-3 westbound 8, 16

d6-7 p0-3 westbound 8, 16, 72

d5-6 d7 westbound 8, 16, 72

6.4.3. Crossbar Transfer Networks

Stream Processor Lexra Inc. Proprietary & Confidential 47
Rev 2.1 August 1, 2002 DO NOT COPY

6.4.3. Crossbar Transfer Networks

Figure 11: Eastbound Crossbar Network

Figure 12: Westbound Crossbar Network

4x4

m0-1 d0-7

m0-1 d0-7

m0-1 d0-7

m0-1 d0-7

m0

d5-6

d0-4, d7

m1

p2

p3

p1

p0

5x3

m0-1

m0-1 m0

m1

d1

d0

mux

m0

m1

m0

m1

d0

d1

m0-1

m0-1, d5-6

d3, d7

d2
d2

d3, d7

m0-1
d4

d4

fan
out

agent

64-bit
connection

targets

queue

d5, d6

d5, d6

d0-4, d7

d5-6

crossbar
sub-block

4x4

p0

p3

p2

p1

p0-3

p0-3

p0-3

p0-3

p2

p3

p1

p0

5x3

p0-3

p0-3 d0-4, d7

d0-4, d7

d1

d0

fan
out

p0-3, d0-4, d7

p0-3, d0-4, d7

m0

m1

d0

d1

p0-3

p0-3
d3, d7

d2
d2

d3, d7

p0-3
d4

d4

mux

p0-3, d7

p0-3

d7

d5, d6

agent

64-bit
connection

targets

queue

crossbar
sub-block

Chapter 6. Crossbar (XB)

48 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

6.5. Crossbar Internal SP-1 Interfaces

6.5.1. Initiator and Target Message Interfaces

Initiators connect to the XB through separate initiator and target message interfaces.

Table 18: Initiator Message Interface

Signal Direction Description

ImsgVal from initiator Asserted if message beat present on ImsgData.

ImsgStart from initiator Asserted first message beat is present on ImsgData.
Not valid if ImsgVal is not asserted.

ImsgRdy to initiator Asserted if XB accepts the current message beat.

ImsgData[63:0] from initiator Message beat contents.

Table 19: Target Message Interface

Signal Direction Description

TmsgVal to target Asserted if message beat present on TmsgData.

TmsgStart to target Asserted if first message beat present on TmsgData.
Not valid if TmsgVal is not asserted.

TmsgRdy from target Asserted if target accepts the current message beat.

TmsgData[63:0] to target Message beat contents.

6.5.2. Initiator and Target Protocols

Stream Processor Lexra Inc. Proprietary & Confidential 49
Rev 2.1 August 1, 2002 DO NOT COPY

6.5.2. Initiator and Target Protocols

The protocol is described in terms of an initiator interface. However the same statements hold true for a target
interface, with the agent and crossbar relationships exchanged. The general characteristics of a message
transfer are illustrated in Figure 13.

Before starting to transmit a message the initiator should be able to source message beats without any delay
of consecutive data beats. The initiator must be able to source all message beats without any dependency on
the completion of other currently pending internal or external activity.

In cycle 1 the initiator attempts to start transmitting a message by asserting ImsgStart and ImsgVal and
sourcing the first message beat on ImsgData. The first message beat contains information used by the XB’s
internal arbiter.

The XB indicates readiness to accept a beat in any cycle by asserting ImsgRdy. If the initiator samples
ImsgRdy asserted at the end of any cycle during which the initiator is driving ImsgVal, the initiator should
present a new message beat, if any, in the next cycle. This process continues until all message beats are
transferred. After the last beat of a message are transferred, a new message may start in the next cycle.

The XB employs pipelined arbitration, but does not expose the details of arbitration to the initiator. The XB
may assert ImsgRdy when ImsgVal is not asserted. The protocol prevents the need for any initiator output
signals to depend on any of its input signals. To accomplish this, the XB includes a limited amount of input
buffering for each initiator interface.

Figure 13: Message Transfer Protocol

CLK

ImsgVal

ImsgStart

ImsgRdy

ImsgData[63:0] 1 2 3 4 5 6 7 8 9
D0148

Chapter 6. Crossbar (XB)

50 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 51
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 7. LX4580 CPU

7.1. LX4580 CPU Overview

SP-1 includes four LX4580 CPUs, each of which provides four independent hardware contexts. This chapter
describes the CPU’s caches.

The LX4580 CPU includes the following features:

• 500 MHz operation.
• 7-stage pipeline.
• Supports Release 2 MIPS32 instruction set.
• Four hardware contexts with fine-grained Hardware Multi-Threading (HMT).
• 64 KByte 4-way set associative instruction cache.
• 16 KByte 4-way set associative data cache.
• Data coherency using MESI algorithm.
• Performance counters.

Figure 14: LX4580 CPU and Crossbar Interface

Requests and
Request Replies

Data
Req/Rep

Data
Cache

Controller

Instruction
Cache

Controller

Crossbar
Interface

SRAM
16 KB

Data Store
and Tags

RALU

4 x
register file

CP0

4 x
control regs

MMU

4 x
TLB

LX4580 CPU core

SRAM
64 KB

Inst Store
and Tags

mux

Inst
Bus

Data
Bus

Inst
Req/Rep

Inquiries Requests
and

Inquiry Replies

EJTAG

EJTAG
Req/Rep

LX4580 CPU

Chapter 7. LX4580 CPU

52 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

7.2. LX4580 CPU Core

The LX4580 CPU core implements the full Release 2 MIPS32 instruction set as described in Chapter 2.
The major blocks of the CPU core are the Register file and ALU (RALU), Control Processor (CP0) and
Memory Management Unit (MMU). Architecturally visible registers in these blocks are replicated to provide
a separate copy for each of the CPU contexts.

7.3. Instruction Cache

The LX4580 CPU includes a 64 KByte 4-way set associative instruction cache that operates at the processor
clock speed. The instruction cache is organized in 64-byte lines, with Valid and Invalid states.

Table 20 describes the actions that are taken by the CPU for the different possible outcomes of a reference to
the instruction cache. This table is from the perspective of the CPU only, and does not indicate additional
chip-level coherency interactions that can take place within SP-1. A complete description of these
interactions is given in Chapter 9.

The Tag column indicates the possible outcomes of the instruction cache’s tag compare logic. For a tag
compare hit, the Current State indicates the state of the cache line that is referenced. For a tag compare miss,
the Current State indicates the state that the cache line that is selected for replacement. The New State is the
state of the cache line after the transaction is completed. The Crossbar Request column indicates the type of
message that the CPU initiates over the crossbar to complete the transaction.

7.4. Data Cache

The LX4580 CPU includes a 16 KByte 4-way set associative data cache that operates at the processor clock
speed. Data in the cache is organized in 64-byte lines, and is held in one of four states corresponding the
MESI (Modified, Exclusive, Shared, Invalid) cache coherency algorithm.

Table 21 describes the actions that are taken within the CPU for the different possible outcomes of a reference
to the data cache. This table is from the perspective of the CPU only, and does not indicate additional chip-
level coherency interactions that can take place within SP-1. A complete description of these interactions is
given in Chapter 9.

The Tag column indicates the possible outcomes of the data cache’s tag compare logic. For a tag compare hit,
the Current State indicates the state of the cache line that is referenced. For a tag compare miss, the Current
State indicates the state that the cache line that is selected for replacement. The New State is the state of the
cache line after the transaction is completed. When data is returned from the crossbar, the request reply

Table 20: Instruction Cache Transactions

Command Tag
Current
State

New State Crossbar Request

Fetch Cached x I V RL

Fetch Cached Hit V V none

Fetch Cached Miss V V RL

Fetch Uncached x x (unchanged) RW

7.5. Cache Line Replacement Algorithm

Stream Processor Lexra Inc. Proprietary & Confidential 53
Rev 2.1 August 1, 2002 DO NOT COPY

indicates whether the data should be installed in the Shared or Exclusive states. The Crossbar Request
column indicates the type of message that the CPU initiates over the crossbar to complete the transaction.

7.5. Cache Line Replacement Algorithm

When a new line must be brought into the instruction cache or data cache, it may be necessary to evict a line
that is currently held. The caches use a 2 bit Most Recently Filled (MRF) field to implement the replacement
algorithm. This value is stored as an extra two bits in tag 0 RAM and is updated any time fill data is returned
to the cache. On a fill, the stored MRF value indicates which way is currently being filled, so at any point in
time this value represents the most recently filled line.

Table 21: Data Cache Transactions

Command Tag
Current
State

New State Crossbar Request

Rd Cached x I S or E RL

Rd Cached Hit S S none

Rd Cached Miss S S or E RL

Rd Cached Hit E E none

Rd Cached Miss E S or E RL

Rd Cached Hit M M none

Rd Cached Miss M S or E RLE

Rd Uncached x I I RB, RH, RT or RW

Rd Uncached Hit S E M I RB, RH, RT or RWa

a. Before reading data from main memory, the SP-1 coherency engine performs
an inquiry to the CPU cache to invalidate or evict the data from the cache.

Rd Uncached Miss S E M (unchanged) RB, RH, RT or RW

Wr Cached x I M RLM

Wr Cached Hit S M UM

Wr Cached Miss S M RLM

Wr Cached Hit E M none

Wr Cached Miss E M RLM

Wr Cached Hit M M none

Wr Cached Miss M M RLME

Wr Uncached x I I WB, WH, WT or WW

Wr Uncached Hit S E M I WB, WH, WT or WWb

b. Before writing data to main memory, the SP-1 coherency engine performs an
inquiry to the CPU cache to invalidate or evict the data from the cache.

Wr Uncached Miss S E M (unchanged) WB, WH, WT or WW

Chapter 7. LX4580 CPU

54 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

When a cache needs to allocate a location for a new line, it first examines the valid bits of all 4 ways. If any of
the 4 ways are invalid, the smallest number way (0->3) that is invalid is selected. If all 4 ways are valid, the
way equal to ((MRF + 1) mod 4) is selected.

Within the data cache, lines may be locked using the Load Linked (LL) instruction. When one thread
executes an LL, that line is locked until a Store Conditional (SC) instruction is executed or some other
operation breaks the lock. (See Section 2.2.1) If a line is locked, it cannot be replaced. If the algorithm above
selects a line that is locked, the algorithm will increment the way by 1 (way + 1 mod 4) and choose that way.
If that way is also locked the algorithm increments again until it finds a way that does not have a locked line.

7.6. CPU Error Handling

To be supplied.

Table 22: Cache Line Replacement Algorithm

Tag state MRF Way selected

Way 0 invalid xx Way 0

Way 0 valid, Way 1 invalid xx Way 1

Way 0,1 valid, Way 2 invalid xx Way 2

Way 0,1,2 valid Way 3 invalid xx Way 3

Way 0-3 valid 00 Way 1

Way 0-3 valid 01 Way 2

Way 0-3 valid 10 Way 3

Way 0-3 valid 11 Way 0

Stream Processor Lexra Inc. Proprietary & Confidential 55
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 8. CPU Crossbar Interface (XBI)

8.1. CPU Crossbar Interface Overview

Each of SP-1’s LX4580 CPU is connected to the crossbar with a dedicated Crossbar Interface (XBI). The
interface includes the following features:

• Split transaction interface between the CPU and crossbar.
• Processes Interrupt messages (IN) received from the crossbar.
• Processes Error messages (BE) received from the crossbar.
• System address space configuration registers.
• Dedicated transaction FIFOs.
• Matches CPU frequency (500 MHz) with crossbar frequency (250 MHz).
• CBUS interface to be used for requests and request replies.
• IBUS interface to be used for inquiries and inquiry replies.

The organization of the CPU Crossbar Interface is shown in Figure 15.

This interface serves as the filter of incoming and outgoing messages. Westbound inquiries and request
replies are examined and redirected to the appropriate internal CPU bus (IBUS or CBUS).

Some messages, such as the interrupt message or error messages, are consumed by the interface and not
retransmitted on the IBUS nor CBUS. Instead, those messages are converted to an interrupt or exception
signal for the CPU.

Figure 15: CPU Crossbar Interface Architecture

CBUS Interface Requests

Requests

Address
Space
Config

Registers

Request
Replies

IBUS Interface

Inquiries &
Request
Replies

Inquiry
Replies

Inquiry
Replies

Inquiry Reply
FIFO

Inquiries

CBUS

IBUS

Request
FIFO

Inquiry &
Request Reply

FIFO

CPU Crossbar Interface

LX4580
CPU and

level 1
caches

Crossbar

Control

Control

Control

Crossbar Clock DomainCPU Clock Domain

Chapter 8. CPU Crossbar Interface (XBI)

56 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Eastbound requests and inquiry replies are examined to determine the destination device for the message.
The destination could also be the configuration registers within the crossbar interface.

8.2. CBUS Interface

The CBUS is a simple signalling layer between the CPU and EJTAG, instruction cache and data cache. The
CBUS handles crossbar requests and request replies. The protocol supports a single cycle request and a single
or multi-beat request replies.

8.3. IBUS Interface

The IBUS is a crossbar style interface between the CPU and data cache. The IBUS handles crossbar inquiries
and inquiry replies. This bus is separate from the CBUS to ensure requests and request replies do not block
inquiries and inquiry replies.

8.4. Request FIFO

The Request FIFO receives only single and dual beat messages. The Request FIFO contains four (4) beats.
This allows 2 dual beat messages or 4 single beat messages to be buffered inside the XBI. There is additional
buffering locally in each cache.

8.5. Inquiry & Request Reply FIFO

The Inquiry & Request Reply FIFO receives two types of traffic from the crossbar. Request replies from
crossbar devices can vary in size from a single beat to a full nine beat cache line. Entire line read replies are
loaded into the FIFO before the reply is sent to the cache. The Inquiry & Request Reply FIFO contains ten
(10) beats of buffering. This allows an entire line and two beats of other transaction(s) to be buffered in the
XBI.

8.6. Inquiry Reply FIFO

The Inquiry Reply FIFO accepts single beat or nine beat messages. The data is taken from the data cache’s
eviction buffers. To help free the line immediately, the XBI contains a nine (9) beat Inquiry Reply FIFO.

8.7. System Address Space Configuration Registers

CBUS requests may target Address Space Configuration Registers within the crossbar interface to configure
the system address space. These registers identify the valid physical address spaces within the SP-1 and
determine where in the physical memory map different crossbar devices are placed. For each configurable
space, there is a mask and base value. Bits from a request address are ANDed with the mask and logically
compared to the base value. If equal, the indicated address space is selected. The exception to this is the
SDRAM address space configuration, which does not have a base value. The base for SDRAM is always
zero.

8.7.1. AS_DRAMMask Register

Stream Processor Lexra Inc. Proprietary & Confidential 57
Rev 2.1 August 1, 2002 DO NOT COPY

8.7.1. AS_DRAMMask Register

Name: AS_DRAMMask.
Size: 32 bits.
Address: AS_Base + 0x0000.
SW Init: Must be set during system configuration.
Restrictions: Must be set to the same value for all CPUs.

8.7.2. AS_PCIABase Register

Name: AS_PCIABase.
Size: 32 bits.
Address: AS_Base + 0x0010.
SW Init: Must be set this during system configuration.
Restrictions: Must be set to the same value for all CPUs.

31-12 11-0

0 DRAMMask

Field Bits Description R/W Reset

0 31-12 Reserved and must be 0 R 0

DRAMMask 11-0 Mask for address bits 35-24. These bits are used to
declare the actual size of addressable SDRAM. The
SDRAM space begins at physical address
0x0_0000_0000. The initial state specifies a 32MB
SDRAM region.

R/W 0xfff

31-24 23-0

0 PCIABase

Field Bits Description R/W Reset

0 31-24 Reserved and must be 0 R 0

PCIABase 23-0 Bits 35-12 of the base of physical address space ser-
viced by components attached to the Stream Proces-
sor PCI-X bridge region A.

R/W 0

Chapter 8. CPU Crossbar Interface (XBI)

58 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

8.7.3. AS_PCIAMask Register

Name: AS_PCIAMask.
Size: 32 bits.
Address: AS_Base + 0x0014.
SW Init: Must be set this during system configuration.
Restrictions: Must be set to the same value for all CPUs.

8.7.4. AS_PCIBBase Register

Name: AS_PCIBBase.
Size: 32 bits.
Address: AS_Base + 0x0018.
SW Init: Must be set this during system configuration.
Restrictions: Must be set to the same value for all CPUs.

31 30-24 23-0

PCIAEn 0 PCIAMask

Field Bits Description R/W Reset

PCIAEn 31 When set, declares that PCI region A is enabled and
accesses to the region are steered to the PCI device.
When clear this region is disabled.

R/W 0

0 30-24 Reserved and must be 0 R 0

PCIAMask 23-0 Mask for address bits 35-24 of the PCI-X address
space. This mask will specify the size of the window
for PCI-X bridge region A.

R/W 0

31-24 23-0

0 PCIBBase

Field Bits Description R/W Reset

0 31-24 Reserved and must be 0 R 0

PCIBBase 23-0 Bits 35-12 of the base of physical address space ser-
viced by components attached to the Stream Proces-
sor PCI-X bridge region B.

R/W 0

8.7.5. AS_PCIBMask Register

Stream Processor Lexra Inc. Proprietary & Confidential 59
Rev 2.1 August 1, 2002 DO NOT COPY

8.7.5. AS_PCIBMask Register

Name: AS_PCIBMask.
Size: 32 bits.
Address: AS_Base + 0x001C.
SW Init: Must be set this during system configuration.
Restrictions: Must be set to the same value for all CPUs.

8.7.6. AS_GIOBase Register

Name: AS_GIOBase.
Size: 32 bits.
Address: AS_Base + 0x0020.
SW Init: Must be set this during system configuration.
Restrictions: Must be set to the same value for all CPUs.

31 30-24 23-0

PCIBEn 0 PCIBMask

Field Bits Description R/W Reset

PCIBEn 31 When set, declares that PCI region B is enabled and
accesses to the region are steered to the PCI device.
When clear this region is disabled.

R/W 0

0 30-24 Reserved and must be 0 R 0

PCIBMask 23-0 Mask for address bits 35-24 of the PCI-X address
space. This mask will specify the size of the window
for PCI-X bridge region B.

R/W 0

31-24 23-0

0 GIOBase

Field Bits Description R/W Reset

0 31-24 Reserved and must be 0 R 0

GIOBase 23-0 Bits 35-12 of the base of physical address space ser-
viced by components attached to GIO.

R/W 0

Chapter 8. CPU Crossbar Interface (XBI)

60 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

8.7.7. AS_GIOMask Register

Name: AS_GIOMask.
Size: 32 bits.
Address: AS_Base + 0x0024.
SW Init: Must be set this during system configuration.
Restrictions: Must be set to the same value for all CPUs.

8.7.8. CPUX_IntPend Register

Name: CPUX_IntPend.
Size: 32 bits.
Address: AS_Base + 0x0100 + (Context * 0x08).
SW Init: None.
Restrictions: Write value is used to clear bits.

31 30-24 23-0

GIOEn 0 GIOMask

Field Bits Description R/W Reset

GIOEn 31 When set, declares that the GIO region is enabled
and accesses to the region are steered to the GIO
device. When clear this region is disabled.

R/W 0

0 30-24 Reserved and must be 0 R 0

GIOMask 23-0 Mask for address bits 35-24 of the GIO address
space. This mask specifies the size of the window for
GIO.

R/W 0

31-16 15-0

0 CPUX_IntPend

Field Bits Description R/W Reset

0 31-16 Reserved and must be 0 R 0

CPUX_IntPend 15-0 Cpu cross-interrupt pending bits for the given context.
These bits are set when a cpu cross-interrupt mes-
sage is received from the interrupt reflector. Individual
bits are cleared when written with ’1’. Bits are
untouched when written with ’0’.

R/W 0

8.7.9. CPUX_IntMask Register

Stream Processor Lexra Inc. Proprietary & Confidential 61
Rev 2.1 August 1, 2002 DO NOT COPY

8.7.9. CPUX_IntMask Register

Name: CPUX_IntMask.
Size: 32 bits.
Address: AS_Base + 0x0104 + (Context * 0x08).
SW Init: None.
Restrictions: None.

8.7.10. DEV_IntPend Register

Name: DEV_IntPend.
Size: 32 bits.
Address: AS_Base + 0x0200 + (Context * 0x08).
SW Init: None.
Restrictions: Write value is used to clear bits.

31-16 15-0

0 CPUX_IntMask

Field Bits Description R/W Reset

0 31-16 Reserved and must be 0 R 0

CPUX_IntMask 15-0 Cpu cross-interrupt mask bits for the given context.
They are logically ANDed with the CPUX_IntPend
bits to determine if the context has received an inter-
rupt.

R/W 0

31-8 7-0

0 DEV_IntPend

Field Bits Description R/W Reset

0 31-8 Reserved and must be 0 R 0

DEV_IntPend 7-0 Device interrupt pending bits for the given context.
These bits are set when a device interrupt message is
received. Individual bits are cleared when written with
’1’. Bits are untouched when written with ’0’.

R/W 0

Chapter 8. CPU Crossbar Interface (XBI)

62 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

8.7.11. DEV_IntMask Register

Name: DEV_IntMask.
Size: 32 bits.
Address: AS_Base + 0x0204 + (Context * 0x08).
SW Init: None.
Restrictions: None.

8.7.12. EXT_IntPend Register

Name: EXT_IntPend.
Size: 32 bits.
Address: AS_Base + 0x0300 + (Context * 0x08).
SW Init: None.
Restrictions: None.

31-8 7-0

0 DEV_IntMask

Field Bits Description R/W Reset

0 31-8 Reserved and must be 0 R 0

DEV_IntMask 7-0 Device interrupt mask bits for the given context. They
are logically ANDed with the DEV_IntPend bits to
determine if the context has received an interrupt.

R/W 0

31-4 3-0

0 EXT_IntPend

Field Bits Description R/W Reset

0 31-4 Reserved and must be 0 R 0

EXT_IntPend 3-0 External interrupt pending bits for the given context.
These bits are set when an external interrupt is
received. The interrupt is cleared by accessing the
interrupt reflector.

R 0

8.7.13. EXT_IntMask Register

Stream Processor Lexra Inc. Proprietary & Confidential 63
Rev 2.1 August 1, 2002 DO NOT COPY

8.7.13. EXT_IntMask Register

Name: EXT_IntMask.
Size: 32 bits.
Address: AS_Base + 0x0304 + (Context * 0x08).
SW Init: None.
Restrictions: None.

31-4 3-0

0 EXT_IntMask

Field Bits Description R/W Reset

0 31-4 Reserved and must be 0 R 0

EXT_IntMask 3-0 External interrupt mask bits for the given context.
These bits are logically ANDed with the EXT_IntPend
bits to determine the interrupt.

R/W 0

Chapter 8. CPU Crossbar Interface (XBI)

64 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

THE REMAINDER OF THIS CHAPTER IS FOR INTERNAL LEXRA USE.

8.8. CBUS Interface

8.8.1. CBUS Request Interface

Table 23: CBUS Request Internal Interface

Signal Name Direction Description

CBUS_YREQO output CBus Request

CBUS_YADDRO[35:0] output Physical Address for Request

CBUS_YDATAO [31:0] output Data for Request

CBUS_YCMDO [3:0] output CBus Request Command

CBUS_YSZO [1:0] output Size of Data for Request

CBUS_YSRCO [2:0] output Source of Request

CBUS_YDWAYO[1:0] output data cache way L1 duplicate tag update

CBUS_YLTIDO [1:0] output Thread ID of Request

CBUS_YBUSYI input Crossbar Busy

8.8.2. CBUS Command Encoding

Stream Processor Lexra Inc. Proprietary & Confidential 65
Rev 2.1 August 1, 2002 DO NOT COPY

8.8.2. CBUS Command Encoding

8.8.3. RLE & RLME Eviction Address

The Eviction address for the RLE and RLME requests is transferred through the CBUS_YDATAO line to the
CPU Crossbar Interface. Since physical addresses are 36-bits and the CBUS_YDATAO line is 32-bits wide,
the entire address cannot be transferred. The assumption is made that the Eviction Address is line-aligned.
Therefore, only 30-bits are needed to transfer the address. The format of the address is as follows:

Table 24: CBUS Commands

Crossbar Request
Message

CBUS_YCMDO[3:0] CBUS_YSZO[1:0]

RL 1001 N/A

RLM 1101 N/A

RLE 1011 N/A

RLME 1111 N/A

RB 1000 00

RH 1000 01

RT 1000 10

RW 1000 11

UM 0101 N/A

WLI 0011 N/A

WLS 0111 N/A

LI 0001 N/A

WB 0000 00

WH 0000 01

WT 0000 10

WW 0000 11

31-30 29-6 5-0

 (0) Address Tag Address Index

Chapter 8. CPU Crossbar Interface (XBI)

66 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

8.8.4. CBUS Request Reply Interface

8.8.5. CBUS Request Reply Destination Encoding

Table 25: CBUS Request Reply Internal Interface

Signal Name Direction Description

CBUS_YDESTI[2:0] input Destination for Reply Data

CBUS_YLSTEI[2:0] input Line State and Transaction Reply Type

CBUS_YRDLTIDI[1:0] input Thread ID for Reply

CBUS_YDATAI[63:0] input Reply Data

CBUS_YDBUSYO output data cache Busy

Table 26: CBUS Destination Encoding

CBUS_YDESTI[2:0] Description

000 Idle Cycle (no valid data)

100 EJTAG Reply

010 data cache Reply

001 instruction cache Reply

Table 27: CBUS Line State and Transaction Encoding

CBUS_YLSTEI[2:0] Description

000 Uncached Sub-Line Read

001 Cached Shared Line Read

010 Cached Exclusive Line Read

011 Cached Modified Line Read

100 Sub-Line Write Ack

101 Reserved

110 Reserved

111 Upgrade Line to Modified State

8.9. IBUS Interface

Stream Processor Lexra Inc. Proprietary & Confidential 67
Rev 2.1 August 1, 2002 DO NOT COPY

8.9. IBUS Interface

8.9.1. Inquiry Interface

8.9.2. IBUS Command Encoding

8.9.3. Inquiry Reply Interface

8.9.4. IBUS Header Encoding

The header of an IBUS reply transfer is equivalent to the crossbar header format. The only IBUS replies
supported are IA, IEA, and IRA. The data cache will leave the header untouched from the inquiry except for
the message type field. Refer to Section 6.3.5 for a detailed description of the crossbar header format.

Table 28: IBUS Request Internal Interface

Signal Name Direction Description

IBUS_REQI input Inquiry Request

IBUS_CMDI[1:0] input Inquiry Request Command

IBUS_CHEI[1:0] input Coherency Engine of Inquiry Request

IBUS_TIDI[3:0] input TID Field of Inquiry Request

IBUS_ADDRI[35:0] input Address of Inquiry Request

IBUS_DBUSYO output data cache Busy

Table 29: IBUS Commands

Crossbar Request
Message

IBUS_CMDI[1:0] Description

II 00 Line Invalidation

IIE 01 Evict Line and Invalidate

IDE 10 Downgrade Line State

IRE 11 Replacement Eviction

Table 30: IBUS Reply Internal Interface

Signal Name Direction Description

IBUS_RDYO output Inquiry Reply Ready

IBUS_STARTO output Inquiry Reply Header Data Valid

IBUS_HDRDATAO[64:0] output Inquiry Reply Header & Data Bus

IBUS_XBUSYI input Crossbar Interface Busy

Chapter 8. CPU Crossbar Interface (XBI)

68 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

8.10. Interrupt Interface

Table 31: Interrupt Interface

Signal Name Direction Description

EXT_INTREQ[3:0] input Active High External Interrupt

GLOBAL_INT input Active High Hardware Error Interrupt

Stream Processor Lexra Inc. Proprietary & Confidential 69
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 9. Memory Subsystem (MS)

9.1. Memory Subsystem Overview

TheMemory Subsystem (MS) is used by the Stream Processor to manage memory requests. It provides a L2
cache, and maintains coherency between main memory and all caches in the Stream Processor. This
coherency support allows use of software applications that do not have knowledge of the hardware
architecture.

The major components of the MS are the Coherency Engine (Che), cache tags, and L2 cache. There are two
Memory Subsystems within SP-1, which are interleaved on cache line boundaries. There are also two
memory controllers (MCs) per SP-1. Depending on required memory depth and bandwidth, one or two MC’s
may be enabled. A Memory Interconnect network (MI) is provided to connect the MS’s to the MC’s.

The total available L2 cache size is 64KB. Up to 8 GB external memory and 51 Gb/s memory bandwidth are
supported by the Stream Processor.

Figure 16: Memory Subsystem Blocks

Duplcate
L1 tags

and L2 tags

Che

L2
Cache
32 KB

Crossbar
Interfaces

MS 1

MS 0

Memory
Controller

MC 0

Memory
Controller

MC 1

MS-MC
Intercon-
nect (MI)

DDR SDRAM

DDR SDRAM

Stream Processor External Memory

Chapter 9. Memory Subsystem (MS)

70 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.2. Memory Subsystem Requirements

Each of the two Memory Subsystems provides the following features:

• Memory Controller Interface

• Each MC services 1 or 2 MSs through the MI.
• ECC protected memory.
• Interface to PC-2100 (133 MHz) DDR SDRAM DIMMs.
• Interface to 200 MHz DDR SDRAM components.
• 32 MB minimum SDRAM/controller using 3 128Mb components.
• 4 GB maximum SDRAM/controller using 2 2GB DIMMs.
• 2.5v SSTL_2 compatible I/O.
• up to 26 Gb/s SDRAM bandwidth.

• L2 Cache

• 32KB on-chip shared L2 cache/subsystem, 4-way set associative, parity protected.
• 32 Gb/s L2 cache bandwidth.
• Parity protected on-chip cache tags.

• Che

• Hardware-enforced coherency between main memory and all caches.
• 32 Gb/s crossbar interface at 250 MHz.
• Handles 50M transactions/s.
• 64 byte line size.
• L2 Cache management and control: Write-Through Protocol, Pseudo-LRU

replacement.
• Supports CPU L1 caches using MESI protocol.
• Automatic initialization of cache tags.
• BIST for on-chip memory arrays including tags and L2 cache.
• Error management for coherency and data errors.
• Performance monitor for message types and miss rates.

9.2.1. Transaction Rate and Bandwidth

The crossbar interface to each memory subsystem provides 32 Gb/s of bandwidth. Assuming that each
transaction uses 10 crossbar beats (A one beat Request message and a nine beat ReqReply message), the
maximum transaction rate is determined as follows:

 32 Gb/s = transaction rate * 10 beats/transaction * 64 bits/beat

 transaction rate = 50M transactions/s

9.3. Supported Memory Configurations

Stream Processor Lexra Inc. Proprietary & Confidential 71
Rev 2.1 August 1, 2002 DO NOT COPY

9.3. Supported Memory Configurations

One or two memory controllers are supported per Stream Processor. The available memory bandwidth and
memory depth vary with the number of memory controllers. When using DIMM memory, the memory clock
rate/date rate is limited to 133 MHz / 266 MHz. Configurations using DIMM memory are shown in Table 32.

Table 32: Memory Configurations w/DIMMs

When using component memory, the memory clock rate/date rate can reach 200 MHz / 400 MHz. These
rates require careful board layout and routing, and may not be achievable with the larger component
quantities. Configurations using component memory are shown in Tables 33, 34 and 35.

Table 33: Memory Configurations w/ 128 Mb Components

Table 34: Memory Configurations w/ 256 Mb Components

Table 35: Memory Configurations w/ 512 Mb Components

Number
of MC

Memory
Bandwidth

Total Memory Size / DIMM Quantity

128 MB
DIMM

256 MB
DIMM

512 MB
DIMM

1 GB
DIMM

2 GB
DIMM

1 17 Gb/s 128 MB / 1 256 MB / 1 512 MB / 1 1 GB / 1 2 GB / 1

2 34 Gb/s 256 MB / 2
512 MB / 4

512 MB / 2
1 GB / 4

1 GB / 2
2 GB / 4

2 GB / 2
4 GB / 4

4 GB / 2
8 GB / 4

Number
of MC

Memory
Bandwidth

Total Memory Size / Component Quantity

128 Mb
16 Mb x 8

128 Mb
8 Mb x 16

128 Mb
4 Mb x 32

1 26 Gb/s 128 MB / 9 64 MB / 5 32 MB / 3

2 51 Gb/s 256 MB / 18 128 MB / 10 64 MB / 6

Number
of MC

Memory
Bandwidth

Total Memory Size / Component Quantity

256 Mb
32 Mb x 8

256 Mb
16 Mb x 16

256 Mb
8 Mb x 32

1 26 Gb/s 256 MB / 9 128 MB / 5 64 MB / 3

2 51 Gb/s 512 MB / 18 256 MB / 10 128 MB / 6

Number
of MC

Memory
Bandwidth

Total Memory Size /
Component Quantity

512 Mb
64 Mb x 8

512 Mb
32 Mb x 16

1 26 Gb/s 512 MB / 9 256 MB / 5

2 51 Gb/s 1GB / 18 512 MB / 10

Chapter 9. Memory Subsystem (MS)

72 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.4. Messages and Transactions

The Stream Processor utilizes thecoherency engine (Che) to ensure that the L1 caches, L2 caches, and
memory are coherent. Each memory subsystem has it own Che and L2 cache.

Crossbar data are grouped inmessages, which are 1, 2, or 9 64-bit beats long. The first beat of every message
contains a message header. This header identifies the message and specifies what action to perform.
Crossbar messages in the Stream Processor directed towards Che are calledeastbound messages. Messages
coming from Che arewestbound messages.

Crossbar messages are grouped in the following messageclasses:

• Request: Eastbound message from a DMA engine or CPU for a memory or device
operation.

• ReqReply: Westbound message in reply to an eastbound Request. May contain
acknowledgement and data.

• Inquiry: Westbound message from Che to a CPU. The Inquiry is used to alter L1 cache
state, and may initiate an eviction.

• InqReply: Eastbound message in reply to a westbound Inquiry. May contain
acknowledgement and data.

Eastbound Request and InqReply messages classes have separate crossbar queues that allow the messages to
pass each other. This is done because an InqReply may be needed to complete a pending Request.
Westbound Inquiry and ReqReply message classes share the same crossbar queue.

Certain Request messages spawn a sequence of other messages. The sequence of messages required to
coherently complete a Request message is called atransaction. Che is responsible for managing the
sequence of messages in a transaction. Che may perform L2 cache and/or memory accesses in order to
complete a transaction.

A transaction consists of the following messages:

• One eastbound Request.

• Zero or more westbound Inquiry messages requests with their associated eastbound
InqReply messages.

• One westbound ReqReply message in reply to the original Request. (ReqReply messages
are not provided for CPU cacheop or L1 eviction requests.)

Before the ReqReply message is sent, all Inquiry/InqReply message pairs required to maintain coherency
must complete. The CPU must prioritize Inquiry messages to prevent stalls at the memory subsystem. When
all InqReply messages are returned to Che, the following events occur:

• The L2 tags and duplicate L1 tags are updated.

• The ReqReply message is returned.

Che maintains a pipeline of Request messages in various stages of completion. This pipeline is organized so
that the transaction rate requirement is met.

9.5. Memory Ordering and Interleave

The Stream Processor two independent interleaved memory subsystems. Therefore, it is possible return
ReqReply messages in a different order than the initiating Requests occurred.

9.6. L2 Cache

Stream Processor Lexra Inc. Proprietary & Confidential 73
Rev 2.1 August 1, 2002 DO NOT COPY

To maintain strong memory ordering, an individual CPU thread has only one outstanding read and one
outstanding write request at a time. A DMA engine may have multiple requests outstanding, and manages
completion at a higher level.

Memory subsystems are interleaved on cache line boundaries. Message address bit A6 determines the
relationship between a cache line and a memory subsystem. Messages are directed to the appropriate
memory subsystem when they enter the crossbar. Message address bit A6 has a constant value when it
reaches the memory subsystem and is ignored.

9.6. L2 Cache

Each memory subsystem has a 32 KB 4-way set associative L2 cache. The cache uses a write-through
protocol with cache states as defined in Table 36. The replacement algorithm is pseudo-LRU. The cache line
size is 64 bytes. L2 cache tag updates occur when Che sends a ReqReply message, indicating transaction
completion.

Table 36: L2 Cache States

9.7. Duplicate L1 Tags

Che maintains duplicates of the L1 data cache (DCACHE) tags for each CPU. These tags are required
because the L2 cache does not maintain inclusion with the L1 caches. In addition, the duplicate tags act as a
filter to prevent directing unnecessary Inquiries to CPUs. Duplicate L1 cache states are defined in Table 37.
Che does not track the state of the ICACHE.

The duplicate tags are updated by Che based on the outcome of a transaction. In the cases when a Request
message leads to an update of the duplicate L1 tag, the Request message header contains the L1 way selected
for update. Duplicate L1 tag updates occur when Che sends a ReqReply message, indicating transaction
completion.

In some cases, there may be differences between the L1 tags and the duplicate L1 tags. These cases are:

• The CPU writes to a line that was originally exclusive. The L1 tag becomes modified
while the duplicate L1 tag remains exclusive.

• The CPU executes a Cache Index Store Tag instruction. The L1 tag is updated, but the
duplicate L1 tag is not.

Unless otherwise noted, references to the L1 cache in this document refer to the L1 DCACHE.

Table 37: Duplicate L1 Cache States

State Abbreviation Meaning

Invalid I not in cache

Shared S valid in cache

State Abbreviation Meaning

Invalid I not in cache

Shared S unmodified in this cache and possibly others

Exclusive E unmodified in this cache

Modified M modified in this cache

Chapter 9. Memory Subsystem (MS)

74 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.8. Coherency Protocol Overview

Che is responsible for maintaining coherency between the L1 caches, L2 cache, and memory in the Stream
Processor. The unit of coherency is a cache line. Che does not maintain inclusion between the L1 and L2
caches. This means that a line in an L1 cache is not required to be in the L2 cache.

Coherency must be maintained when an L1 cache has been updated (modified), but other caches and
memory have not (they are "stale"). For example, when CPU C0 holds a modified line, and CPU C1
attempts to read that line, the line is stale in memory. Che issues an Inquiry message to request that C0 evict
the line, and returns it to C1.

The L2 cache does not hold modified lines, and so always contains the same information as memory.
Modified L1 lines are written-through to memory. The L2 cache is allocated only for data line reads when
the requested line is exclusive or shared in some L1 cache.

The L2 cache is intended to hold data shared between CPUs. A line enters the shared state when it is read by
more than one CPU. However, a modified line does not enter the shared state. Instead, it is returned only to
the requesting CPU.

If a line is marked exclusive in the duplicate L1 tag, it is possible that the same line may be stale in the L2
cache and memory. This occurs because the CPU can modify the line without external notification.

The coherency protocol is defined in the transactions tables (Section 9.17). The tables show what actions and
messages result from all combinations of Request message types and tag lookups.

9.9. Cacheability and Coherence

If a request iscacheable, the target line may be allocated in the L2 cache. If a request iscoherent, caches (L1
and L2) and main memory are left in a state such that it is possible to determine where fresh and stale copies
of the target line reside. The relationship between requests and these attributes are shown in Table 38.

Table 38: Request Attributes

If a non-cacheable request hits a valid line in a L2 cache, the data in that cache is used to fulfill the request.
Non-cacheable requests never lead to allocation of the L2 cache.

If a sub-line or DMA request hits a valid line in a L1 cache, that line is invalidated. If the line is modified, it
is evicted.

Certain cacheable requests do not lead to allocation of the L2 cache if there is no performance advantage in
doing so.

Request Agent and Type L2 Cacheable Coherent

CPU DCACHE line request yes yesa

a. Certain CPU address regions are not Coherent. Requests for these regions never

target the MS.

CPU ICACHE line request no yes

CPU (ICACHE, DCACHE, or EJTAG) or
DMA sub-line requests

no yes

DMA read line requests (no allocation) no yes

DMA write line requests (no allocation) no yes

9.10. Inquiry Messages

Stream Processor Lexra Inc. Proprietary & Confidential 75
Rev 2.1 August 1, 2002 DO NOT COPY

9.10. Inquiry Messages

Inquiry messages are sent to L1 data caches as a result of Request messages that require L1 data or changes in
L1 state. Che determines that an L1 data cache Inquiry is required from the Request type and duplicate L1
tags. L1 inquiries should never be received by a CPU for a line that is not valid. Inquiries always lead to a
state change in the target L1 cache line. If the line is modified, it is evicted from the L1 cache.

Three types of Inquiries are initiated by Che. When an eviction results, the evicted line moves from the CPU
to Che as part of an InqReply message.

1. Unsolicited Inquiry for a valid line (II, IIE, or IDE).

• Inquiry trigger: A Request where the requested line is valid in a CPU’s L1 cache.
• Inquiry expected by CPU: No (unsolicited inquiry)
• Inquiry address source: 1st beat of Request message.
• Tag lookup requirements: Determine if Inquiry is required, and target.
• Inquiry target: Identified by duplicate L1 tag lookup. If the Request is non-cacheable

or from the ICACHE, the Inquiry target may be the same CPU as the Request source.

2. Expected Inquiry due to read with replacement eviction (IRE).

When the CPU requests a line, it is possible that the line being replaced is modified. The
Request message indicates (in the request type) that a L1 eviction is required. In these cases,
Che performs two tag lookups when servicing the Request. The first lookup uses the address
of the line being read, and the second lookup uses the address of the evicted line. Tag consis-
tency checks are performed on both tag lookups.

If a replacement eviction is required, Che sends a Replacement Inquiry (IRE) to the requesting
CPU. Replacement Inquiries differ from other Inquiries in that Che does not wait for the
InqReply before sending the ReqReply for the original Request. This can occur because the
evicted line is not required to complete the coherency operations for the requested line. In
anticipation of the Inquiry, the CPU stores the evicted line in an eviction buffer. This frees
space in the L1 cache for the requested line.

• Inquiry trigger: RLE or RLME Request
• Inquiry expected by CPU: Yes
• Inquiry address source: 2nd beat of Request message.
• Tag lookup requirements: Determine if inquiry still required.
• Inquiry target: Request originator.

3. Expected Inquiry due to the CPU cache instruction or independent replacement eviction (IRE).

• Inquiry trigger: WLI or WLS Request
• Inquiry expected by CPU: Yes
• Inquiry address source: 1st beat of Request message.
• Tag lookup requirements: Determine if Inquiry is still required.
• Inquiry target: Request originator.

Chapter 9. Memory Subsystem (MS)

76 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.11. L2 Cache Line Replacement

When the L2 cache line must be allocated as indicated in the transaction table, a pseudo-LRU policy is used
to select the way for replacement:

• If one or more invalid ways are available, the lowest numbered invalid way is selected.

• If all ways are valid, the least recently or next to least recently used is selected.

The pseudo-LRU algorithm require a three bit field to store state information. This field is updated on all L2
cache accesses as follows:

If access to way 0 or 1
LRU[2] = 0

 LRU[1] = LRU[1]
LRU[0] = way

Else If access to way 2 or 3
LRU[2] = 1

 LRU[1] = way - 2
LRU[0] = LRU[0]

 The following algorithm is used to select a way for replacement:

If one or more ways invalid
way = lowest numbered invalid way

Else If LRU[2] = 0
way = !LRU[1] + 2

Else If LRU[2] = 1
way = !LRU[0]

No transaction table is included for L2 replacements. When a replacement occurs, the new L2 state is based
on the requesting transaction.

9.12. Coherency Effects of Crossbar Queues

When the CPU issues a Request message, the message type is a function of the CPU operation and the L1
cache state. In certain cases, the L1 cache state that led to a particular Request message may change before
the Request is serviced.

The XB provides a queue that orders and serializes Request messages from CPUs and DMA engines. It is
possible for the queue to contain Requests from different CPUs that target the same cache line. If one CPU’s
Request leads to a state change in a second CPU’s L1 cache, an inconsistency may exist when the second
CPU’s Request is subsequently processed. The inconsistency appears as a mismatch between the message
type and the duplicate L1 tags. These inconsistencies and the required actions are reflected in the transaction
tables.

Inconsistencies of this type occur in cases where a CPU issues Requests involving lines that are valid. This
happens in the following cases:

9.12. Coherency Effects of Crossbar Queues

Stream Processor Lexra Inc. Proprietary & Confidential 77
Rev 2.1 August 1, 2002 DO NOT COPY

1) When a CPU issues an UM Request, it intends to upgrade a L1 line from S to M. Consider this sequence
of events:

Line: L0
CPUs: C0, C1

L0 is S at C0
L1 is I at C1

C0 issues UM for L0
C1 issues RLM for L0
Che services C1 RLM for L0

L0 is I at C0
L0 is M at C1

Che services C0 UM for L0
L0 is M at C0
L0 is I at C1

Che assumes that although an UM Request from C0 for L0 is received, L0 was invalidated by another CPU.
This invalidation occurred between the time that the UM Request was issued and serviced. As a result, Che
returns the target line to C0.

2) When a M state L1 line must be replaced to make room for a new line, the CPU indicates this in the
Request message. Consider this sequence of events:

Lines: L0, L1
CPUs: C0, C1

L0 is I at C0
L1 is I at C0
L0 is M at C1
L1 is I at C1

C0 issues RL for L0
C1 issues RLE for L1 evicting L0
Che services C0 RL for L0

L0 is E at C0
L0 is I at C1

 L1 is unchanged at C0 and C1
Che services C1 RLE for L1 evicting L0

L0 is unchanged at C0 and C1
L1 is unchanged at C0
L1 is E at C1

Che assumes that although a RLE request from C1 to evict L0 is received, L0 was invalidated by another
CPU. As a result, Che does not send an IRE for L0 to C1.

Chapter 9. Memory Subsystem (MS)

78 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.13. Configuration

In the following sections, "n" refers to the MS number.

9.13.1. MSnCfg Register

Name: MSnCfg.
Size: 32 bits.
Address: MSBase + 0x0 + n*0x40.
Restrictions: Modify only during system configuration. Must be set to the same value for all MS.

9.13.2. MSnPld Register

Name: MSnPld.
Size: 32 bits.
Address: MSBase + 0x100 + n*0x40.
Restrictions: Modify only during system configuration. Must be set to the same value for all MS.

31-24 23-16 15-6 5-4 3-2 1 0

Branch0 Branch1 TagNum Reserved NumCS NumMC InitTag

Field Bits Description R/W Reset

Branch0 31-24 First character of branch (ASCII format) R valid

Branch1 23-16 Second character of branch (ASCII format) R valid

TagNum 15-6 Tag Number R valid

NumCS 3-2 Number of physical memory ranks (chip selects)
00: 1 CS
01: 2 CS
10: reserved
11: 4 CS

R/W 0

NumMC 1 Number of MCs to use
0: 1 MC
1: 2 MC

R/W 0

InitTag 0 Initialize the state of the L2 tags and L1 duplicate tags
to Invalid. This bit is cleared automatically when tag ini-
tialization is complete.

R/W 0

31-11 10-1 0

Reserved MemReqDly Pld

Field Bits Description R/W Reset

Pld 0 Implementation type
0: ASIC implementation
1: PLD implementation

R/W 0

MemReqDly 10-1 Memory clocks that must elapse between memory
requests in PLD implementations

R/W 0

9.13.3. MSnMemCtl Registers

Stream Processor Lexra Inc. Proprietary & Confidential 79
Rev 2.1 August 1, 2002 DO NOT COPY

9.13.3. MSnMemCtl Registers

Name: MSnMemCtl.
Size: 16 bits/register
Address: MSBase + Offset + n*0x40
Restrictions: Modify only during system configuration. Must be set to the same value for all MS.

These registers reside within the Denali memory controller. Refer to the "Denali Databahn Memory
Processor" document for register details.

Table 39: Memory Controller Register Offsets

MC Register Offset

MSnMem_Main 0x0200

MSnMem_CTLA 0x0202

MSnMem_CTLB 0x0204

MSnMem_CTLC 0x0206

MSnMem_CTLD 0x0208

MSnMem_CTLE 0x020A

MSnMem_CTLF 0x020C

MSnMem_CTLG 0x020E

MSnMem_CTLH 0x0210

MSnMem_CTLI 0x0212

MSnMem_CTLJ 0x0214

MSnMem_ECC1 0x0216

MSnMem_ECC2 0x0218

MSnMem_ECC3 0x021A

MSnMem_ECC4 0x021C

MSnMem_ECC5 0x021E

MSnMem_ECC6 0x0220

MSnMem_ECC7 0x0222

MSnMem_ECC8 0x0224

MSnMem_ECC9 0x0226

MSnMem_ECC10 0x0228

MSnMem_ECC11 0x022A

MSnMem_ECC12 0x022C

MSnMem_ECC13 0x022E

MSnMem_ECC14 0x0230

MSnMem_ECC15 0x0232

MSnMem_ECC16 0x0234

MSnMem_ECC17 0x0236

Chapter 9. Memory Subsystem (MS)

80 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.14. Performance Counters

There are two performance counters per MS. The event counted by each counter may be independently
selected in the MSnPcntEv* registers. The counters are enabled by writing to the MSnPcntEn register. The
local enable bits are local to each MS. The global bits from MS0 are ANDed with the local bits in each MS to
form the counter enable signal. The global bits in MS1 are unused.

9.14.1. MSnPcnt0, MSnPcnt1 Register

Name: MSnPcnt0, MSnPcnt1.
Size: 32 bits.
Address: MSBase + 0x1000 + n*0x40, MSBase + 0x1100 + n*0x40.
Restrictions:

9.14.2. MSnPcntEn Register

Name: MSnPcntEn.
Size: 32 bits.
Address: MSBase + 0x1200 + n*0x40.
Restrictions: Global enables in MS 1 are unused.

31-0

Count

Field Bits Description R/W Reset

Count 31-0 Count value R/W 0

31-4 3 2 1 0

Reserved GblEnCnt1 GblEnCnt0 LclEnCnt1 LclEnCnt0

Field Bits Description R/W Reset

LclEnCnt0 0 Local counter 0 enable R/W 0

LclEnCnt1 1 Local counter 1 enable R/W 0

GblEnCnt0 2 Global counter 0 enable (Only valid in MS0) R/W 0

GblEnCnt1 3 Global counter 1 enable (Only valid in MS0) R/W 0

9.14.3. MSnPcntEv0, MSnPcntEv1 Register

Stream Processor Lexra Inc. Proprietary & Confidential 81
Rev 2.1 August 1, 2002 DO NOT COPY

9.14.3. MSnPcntEv0, MSnPcntEv1 Register

Name: MSnPcntEv0, MSnPcntEv1.
Size: 32 bits.
Address: MSBase + 0x1300 + n*0x40, MSBase + 0x1400 + n*0x40.
Restrictions Some fields are mutually exclusive; e.g. Wr AND Rd can never occur.

31-29 28-27 26-25 24-23 22-21 20-19 18-17 16-15

Reserved InqSh InqMod InqExMod InqEx InqEvict Up Wr

14-13 12-11 10-9 8-7 6-5 4-3 2-1 0

RdEvict RdIntent Rd L2Hit Size CpuAgnt Agnt Mode

Field Bits Description R/W Reset

Mode 0 0: count clocks
1: count requests (match conditions from the fields below are ANDed
together to qualify this)

R/W 0

Agnt 2-1 0x: don’t care
10: DMA
11: CPU

R/W 0

CpuAgnt 4-3 0x: don’t care
10: ICACHE
11: DCACHE

R/W 0

Size 6-5 0x: don’t care
10: sub-line
11: line

R/W 0

L2Hit 8-7 0x: don’t care
10: L2 miss
11: L2 hit

R/W 0

Rd 10-9 0x: don’t care
10: not read
11: read

R/W 0

RdIntent 12-11 0x: don’t care
10: not read with intent to modify
11: read with intent to modify

R/W 0

RdEvict 14-13 0x: don’t care
10: not read with replacement eviction
11: read with replacement eviction

R/W 0

Wr 16-15 0x: don’t care
10: not write
11: write

R/W 0

Up 18-17 0x: don’t care
10: not upgrade
11: upgrade

R/W 0

InqEvict 20-19 0x: don’t care
10: no inquiry for replacement eviction
11: inquiry for replacement eviction

R/W 0

InqEx 22-21 0x: don’t care
10: no inquiry to exclusive line
11: inquiry to exclusive line

R/W 0

InqExMod 24-23 0x: don’t care
10: no inquiry to exclusive line that returns dirty data
11: inquiry to exclusive line that returns dirty data

R/W 0

InqMod 26-25 0x: don’t care
10: no inquiry to modified line
11: inquiry to modified line

R/W 0

InqSh 28-27 0x: don’t care
10: no inquiry to shared line
11: inquiry to shared line

R/W 0

Chapter 9. Memory Subsystem (MS)

82 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.15. Error Handling

Several types of errors are detected and reported in the MS. When an enabled error condition occurs,
information on the type of the error and the associated message header is stored. The CPU responsible for
managing errors is informed of the error via INT, PANIC0, or PANIC1. When an enabled error condition not
related to data occurs, Inquiries and Tag updates are inhibited. In the case of errors associated with data, it is
not possible to inhibit these actions.

The errors detected and possible actions are shown in Table 40.

Table 40: MS Errors

Error Type Encoding Description
Inquiries
and Tag
Updates

Header
Type
Saved

TagCons 0000 Inconsistency between tags:
- L1 = M and L2 = S
- one L1 = E and another L1 valid
- one L1 = M and another L1 valid
- more than one L1 way valid
- more than one L2 way valid

No Request

TypCons 0001 Inconsistency between request type and L1 tag.
These cases are defined in the transaction tables.

No Request

AdrCons 0010 Inconsistency between request type and address:
- Line request to register address space

No Request

AgntCons 0011 Inconsistency between request type and agent:
- RLN, WLN from CPU
- RL, RLE, RLM, RLME, UM from DMA

No Request

ReqUn 0100 Request message unexpected No Request

IqrUn 0101 InqReply message unexpected or of incorrect type No InqReply

ReqBt 0110 Incorrect number of beats in Request message No Request

IqrBt 0111 Incorrect number of beats in InqReply message No InqReply

IqrTO 1000 InqReply message timeout No Inquiry

WesTO 1001 Crossbar unavailable for westbound beat No
Yes

Inquiry or
ReqReply

TagPar 1010 Tag parity error No Request

L2DatPar 1011 L2 data parity error Yes ReqReply

UncorrEcc 1100 Uncorrectable memory ECC error Yes ReqReply

CorrEcc 1101 Correctable memory ECC error Yes ReqReply

9.15.1. MSnErrEn0, MSnErrEn1 Register

Stream Processor Lexra Inc. Proprietary & Confidential 83
Rev 2.1 August 1, 2002 DO NOT COPY

9.15.1. MSnErrEn0, MSnErrEn1 Register

The action performed in response to each error type may be separately enabled. In all cases, the normal
ReqReply cycle is returned to the requesting CPU. The MSnErrEn register is used to enable error actions.
Each error has three possible actions, which are enabled by setting the enable to "1".

Name: MSnErrEn0, MSnErrEn1.
Size: 32 bits.
Address: MSBase + 0x2000 + n*0x40, MSBase + 0x2004 + n*0x40.
Restrictions: Modify only during system configuration. Must be set to the same value for all MS.

MSnErrEn0: MSnErrEn1:

31-24 23-0

Reserved *En

31-18 17-0

Reserved *En

Field Register Bits R/W Reset

TagConsEn 0 2-0 R/W 0

TypConsEn 0 5-3 R/W 0

AdrConsEn 0 8-6 R/W 0

AgntConsEn 0 11-9 R/W 0

ReqUnEn 0 14-12 R/W 0

IqrUnEn 0 17-15 R/W 0

ReqBtEn 0 20-18 R/W 0

IqrBtEn 0 23-21 R/W 0

IqrTOEn 1 2-0 R/W 0

WesTOEn 1 5-3 R/W 0

TagParEn 1 8-6 R/W 0

L2DatParEn 1 11-9 R/W 0

UncorrEccEn 1 14-12 R/W 0

CorrEccEn 1 17-15 R/W 0

Bit Enable

0 PANIC0

1 PANIC1

2 ERR_INT

Chapter 9. Memory Subsystem (MS)

84 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.15.2. MSnErrTO Register

Name: MsnErrTO.
Size: 32 bits.
Address: MSBase + 0x2100 + n*0x40.
Restrictions: Modify only during system configuration. Must be set to the same value for all MS.

9.15.3. MSnErrStat0, MSnErrStat1 Register

When an error occurs, the MS stores the error type and a copy of the message header associated with the
error. This data is stored in the MSnErrStat registers. If only correctable ECC errors occur, these registers
hold information about the first correctable ECC error. If any fatal errors occur, these registers contain
information about the first fatal error.

Name: MSnErrStat0, MSnErrStat1.
Size: 32 bits.
Address: MSBase + 0x2200 + n*0x40, MSBase + 0x2204 + n*0x40.
Restrictions:

MSnErrStat0:

MSnErrStat1:

31-16 15-8 7-0

Reserved WesTOVal IqrTOVal

Field Bits Description R/W Reset

WesTOVal 15-8 Bits 15:8 of timeout count on crossbar availability for a
westbound beat

R/W 0

IqrTOVal 7-0 Bits 15:8 of timeout count on receiving all expected
InqReply messages.

R/W 0

63-60 59-32

Error Type Message Header

31-0

Message Header

Field Bits Description R/W Reset

Error Type 63-60 Error Type (see Table 40, "MS Errors") R/W 0

Message
Header

59-0 Message Header (see crossbar chapter for format) R/W 0

9.16. Interfaces

Stream Processor Lexra Inc. Proprietary & Confidential 85
Rev 2.1 August 1, 2002 DO NOT COPY

9.16. Interfaces

9.16.1. Crossbar Interface

Table 41: Control Interface

Table 42: Eastbound Request Message Interface

Table 43: Eastbound InqReply Message Interface

Table 44: Westbound Message Interface

Signal Bits I/O Description

XB_CLK 1 I Crossbar clock

XB_RESET_N 1 I System reset

Signal Bits I/O Description

REQ_VLD 1 I Message beat present on REQ_DAT

REQ_STA 1 I First message beat present on REQ_DAT

REQ_RDY 1 O MS accepts current message beat

REQ_DAT[63:0] 64 I Message beat contents

Signal Bits I/O Description

IQR_VLD 1 I Message beat present on IQR_DAT

IQR_STA 1 I First message beat present on IQR_DAT

IQR_RDY 1 O MS accepts current message beat

IQR_DAT[63:0] 64 I Message beat contents

Signal Bits I/O Description

WES_VLD 1 I Message beat present on WES_DAT

WES_STA 1 I First message beat present on WES_DAT

WES_RDY 1 O MS accepts current message beat

WES_DAT[63:0] 64 I Message beat contents

Chapter 9. Memory Subsystem (MS)

86 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

9.16.2. Interrupt Interface

Table 45: Interrupt Interface

9.16.3. SDRAM Interface

Table 46: SDRAM Interface

Signal Bits I/O Description

MS_ERR_INT_R 1 O CPU interrupt

MS_PANIC0_R 1 O PANIC0 signal

MS_PANIC1_R 1 O PANIC1 signal

Signal Bits I/O Description

MC_RAS_N 1 O Row address strobe

MC_CAS_N 1 O Column address strobe

MC_WE_N 1 O Write enable

MC_S_N[3:0] 4 O Chip select

MC_BA[1:0] 2 O Bank address

MC_A[13:0] 14 O Address

MC_DQ[71:0] 72 I/O Data bus

MC_DQS[8:0] 9 I/O Data strobe

MC_DQM[8:0] 9 O Data mask

MC_CKE 1 O Clock enable

MC_MEMCLK 1 I SDRAM clock

9.17. Che Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 87
Rev 2.1 August 1, 2002 DO NOT COPY

9.17. Che Transactions

The following transaction tables define the Actions and New State for all possible combinations of Requests
and Current cache states. The following notes apply to all tables:

• Valid states (S E M) imply address match.

• All L1 state refers to aggregate state of all CPU DCACHEs as reflected in the duplicate L1
tags.

• Req L1 state refers to state of requestor’s CPU DCACHE as reflected in the duplicate L1
tags.

• Other L1 state refers to aggregate state of all CPU DCACHEs other than the requestor as
reflected in the duplicate L1 tags.

• When enabled TagCons or TypeCons errors occur, inquiries and tag updates do not occur.
However, the appropriate ReqReply is always returned. The ReqReply when an error is
enabled is the same as the ReqReply when the error is disabled.

Chapter 9. Memory Subsystem (MS)

88 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Note:
There is no L1 DCACHE state change due to the ReqReply message. For ICACHE requests, DCACHE state changes occur only
due to Inquiry messages.

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

All
L1 L2 All

L1 L2

RL (ICACHE) I I data mem - RQR
DLS to requestor

I I

S I data mem - RQR
DLS to requestor

S I

E I IDE to L1
data mem - RQR
DLS to requestor

S I if L1 returns modified data
treat as MI

M I IIE to L1
data IQR - mem, RQR
DLS to requestor

I I

I S data L2 - RQR
DLS to requestor

I S

S S data L2 - RQR
DLS to requestor

S S

E S IDE to L1
data L2 - RQR
DLS to requestor

S S if L1 returns modified data
treat as MS (error dis-
abled)

M S TagCons Error NC NC

If error disabled:
IIE to L1
data IQR - L2, mem, RQR
DLS to requestor

I S

9.17. Che Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 89
Rev 2.1 August 1, 2002 DO NOT COPY

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

Req
L1

Other
L1 L2 Req

L1
Other

L1 L2

RL
RLE

I I I data mem - RQR
DLE to requestor

E I I

I S I allocate L2
data mem - L2, RQR
DLS to requestor

S S S

I E I IDE to other
allocate L2
data mem - L2, RQR
DLS to requestor

S S S if other returns modified
data treat as IMI

I M I IIE to other
data IQR - mem, RQR
DLE to requestor

E I I

I I S data L2 - RQR
DLE to requestor

E I S

I S S data L2 - RQR
DLS to requestor

S S S

I E S IDE to other
data L2 - RQR
DLS to requestor

S S S if other returns modified
data treat as IMS (error
disabled)

I M S TagCons Error NC NC NC

If error disabled:
IIE to other
data IQR - L2, mem, RQR
DLE to requestor

E I S

Chapter 9. Memory Subsystem (MS)

90 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Note:
Cases where "Req L1" = I on UM occur due to invalidation by other CPU between the time the request is issued and serviced

.

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

Req
L1

Other
L1 L2 Req

L1
Other

L1 L2

RLM
RLME
UM

I I I data mem - RQR
DLM to requestor

M I I

I S I II to other
data mem - RQR
DLM to requestor

M I I

I E I IIE to other
data mem - RQR
DLM to requestor

M I I if other returns modified data
treat as IMI

I M I IIE to other
data IQR - RQR
DLM to requestor

M I I

I I S data L2 - RQR
DLM to requestor

M I I

I S S II to other
data L2 - RQR
DLM to requestor

M I I

I E S IIE to other
data L2 - RQR
DLM to requestor

M I I if other returns modified data
treat as IMS (error disabled)

I M S TagCons Error NC NC NC

If error disabled:
IIE to other
data IQR - RQR
DLM to requestor

M I I

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

Req
L1

Other
L1 L2 Req

L1
Other

L1 L2

RL, RLE
RLM, RLME

S E M * * TypCons Error NC NC NC If error disabled, treat as I** in
previous tables

9.17. Che Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 91
Rev 2.1 August 1, 2002 DO NOT COPY

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

Req
L1

Other
L1 L2 Req

L1
Other

L1 L2

UM S I I UMA to requestor M I I

S S I II to other
UMA to requestor

M I I

S E I TagCons Error NC NC NC If error disabled, treat as SSI

S M I TagCons Error NC NC NC If error disabled, treat as SSI

S I S UMA to requestor M I I

S S S II to other
UMA to requestor

M I I

S E S TagCons Error NC NC NC If error disabled, treat as SSS

S M S TagCons Error NC NC NC If error disabled, treat as SSS

E M * * TypCons Error NC NC NC If error disabled, treat as S**

Chapter 9. Memory Subsystem (MS)

92 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Notes:
Address supplied with LI is only a tag index. Address match is not checked. Requested way is unconditionally invalidated.

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

Req
L1

Other
L1 L2 Req

L1
Other

L1 L2

VE
WLI
WLS

I I I None I I I

I S I None I S I

I E I None I E I

I M I None I M I

I I S None I I S

I S S None I S S

I E S None I E S

I M S TagCons Error NC NC NC If error disabled, treat as
IIS

S * * TypCons Error NC NC NC If error disabled, treat as
I**

E M I I IRE to requestor
data IQR - mem

I I I On WLS, New Req L1 =
S

E M S E M I TagCons Error NC NC NC If error disabled, treat as
[EM]II

E I S IRE to requestor
data IQR - L2, mem

I I S On WLS, New Req L1 =
S

M I S TagCons Error NC NC NC If error disabled, treat as
EIS

E M S E M S TagCons Error NC NC NC If error disabled, treat as
EIS

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

Req
L1

Other
L1 L2 Req

L1
Other

L1 L2

LI * * * None I NC NC

9.17. Che Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 93
Rev 2.1 August 1, 2002 DO NOT COPY

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

All
L1 L2 All

L1 L2

RLN I I data mem - RQR
DL to requestor

I I

S I II to L1
data mem - RQR
DL to requestor

I I

E I IIE to L1
data mem - RQR
DL to requestor

I I if L1 returns modified data
treat as MI

M I IIE to L1
data IQR - mem, RQR
DL to requestor

I I

I S data L2 - RQR
DL to requestor

I S

S S II to L1
data L2 - RQR
DL to requestor

I S

E S IIE to L1
data L2 - RQR
DL to requestor

I S if L1 returns modified data
treat as MS (error dis-
abled)

M S TagCons Error NC NC

If error disabled:
IIE to L1
data IQR - L2, mem, RQR
DL to requestor

I S

Chapter 9. Memory Subsystem (MS)

94 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

All
L1 L2 All

L1 L2

WLN I I data REQ - mem
WLA to requestor

I I

S I II to L1
data REQ - mem
WLA to requestor

I I

E I II to L1
data REQ - mem
WLA to requestor

I I

M I II to L1
data REQ - mem
WLA to requestor

I I

I S data REQ - L2, mem
WLA to requestor

I S

S S II to L1
data REQ - L2, mem
WLA to requestor

I S

E S II to L1
data REQ - L2, mem
WLA to requestor

I S

M S TagCons Error NC NC

If error disabled:
II to L1
data REQ - L2, mem
WLA to requestor

I S

9.17. Che Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 95
Rev 2.1 August 1, 2002 DO NOT COPY

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

All
L1 L2 All

L1 L2

RB
RH
RT
RW

I I data mem - RQR
DS to requestor

I I

S I II to L1
data mem - RQR
DS to requestor

I I

E I IIE to L1
data mem - RQR
DS to requestor

I I if L1 returns modified data
treat as MI

M I IIE to L1
data IQR - mem
data mem - RQR
DS to requestor

I I

I S data L2 - RQR
DS to requestor

I S

S S II to L1
data L2 - RQR
DS to requestor

I S

E S IIE to L1
data L2 - RQR
DS to requestor

I S if L1 returns modified data
treat as MS (error dis-
abled)

M S TagCons Error NC NC

If error disabled:
IIE to L1
data IQR - L2, mem
data L2 - RQR
DS to requestor

I S

Chapter 9. Memory Subsystem (MS)

96 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Eastbound
Transaction

Request

Current
State

Actions

New
State

Notes

All
L1 L2 All

L1 L2

WB
WH
WT
WW

I I data REQ - mem
WSA to requestor

I I

S I II to L1
data REQ - mem
WSA to requestor

I I

E I IIE to L1
data REQ - mem
WSA to requestor

I I if L1 returns modified data
treat as MI

M I IIE to L1
data IQR - mem
data REQ - mem
WSA to requestor

I I

I S data REQ - mem
WSA to requestor

I I

S S II to L1
data REQ - mem
WSA to requestor

I I

E S IIE to L1
data REQ - mem
WSA to requestor

I I if L1 returns modified data
treat as MS (error dis-
abled)

M S TagCons Error NC NC

If error disabled:
IIE to L1
data IQR - mem
data REQ - mem
WSA to requestor

I I

Stream Processor Lexra Inc. Proprietary & Confidential 97
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 10. Direct Memory Access (DMA)

10.1. Direct Memory Access Overview

The Stream Processor provides multiple Direct Memory Access (DMA) controllers for high-speed data
transfer between the SDRAM and external interfaces, and from SDRAM to SDRAM.

• Three Ethernet DMA controllers.

• Ethernet to SDRAM, SDRAM to Ethernet.
• 1 Gbps full duplex bandwidth for Gigabit Ethernet.
• Sustainable 64-byte packet transfers.
• Programmable hashing to depth of 128 bytes to determine input queue assignment.

• One PCI-X DMA controller.

• PCI-X to SDRAM, SDRAM to PCI-X.
• 2 Gbps data bandwidth.

• One Memory Move DMA controller.

• SDRAM to SDRAM transfer.
• 10 Gbps data bandwidth.

• Features common to all DMA controllers:

• 36-bit physical address space.
• Memory-resident buffer descriptors and queues, up to 1M entries each.
• Atomic enqueue and dequeue supports multi-processor access to DMA controller.
• Minimal use of interrupts.
• Performance counters.
• Checksum calculation.

Figure 17 shows the Stream Processor’s DMA controllers. Representative DMA pathways are shown.

Figure 17: Direct Memory Access System Overview

CPUsDMA

MAC

DMA

Mem
Move

Crossbar

(4)

DMA

MAC

streaming DMA

memory to
memory DMA

SDRAM

Stream Processor

DMA

MAC

Memory
Subsystem

PCI-X

DMA

Chapter 10. Direct Memory Access (DMA)

98 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

The Stream Processor’s Ethernet interfaces and PCI-X interface include a dedicated DMA controller.
Depending on the nature of the interface, each controller supports a streaming or memory to memory data
transfer mode. The streaming mode transfers packet data between a FIFO and SDRAM. The memory to
memory mode transfers data from SDRAM to SDRAM, or between SDRAM and memory on the PCI-X
bus.

Table 47 indicates the bandwidths associated with each DMA controller. A more detailed view of
performance is given in Section 10.14.

10.2. Addressing

The DMA controllers operate in the Stream Processor’s 36-bitphysical address space (64 GBytes). Software
typically employs the CPU’s MMU to translate addresses in the CPU’s 32-bit logical address space to the
Stream Processor’s 36-bit physical address space. These logical to physical mappings are not accessible to
the DMA controllers. All pointers that are stored in DMA data structures consist of physical addresses.
Software must perform logical to physical translations to construct DMA data structures. Software must also
ensure that DMA data structures spanning more than one physical page frame occupy consecutive page
frames in physical memory.

Depending on the memory management and buffer allocation methods employed by software, the buffer
space addressable by DMA may be limited to 2 GBytes, or may be as large as 64 GBytes. The 2 GByte
configuration allows the simplest memory management and buffer allocation scheme. Larger DMA
configurations require more software overhead for buffer management.

Although the Stream Processor supports a 64 GByte physical address space, the Memory Subsystem
supports up to 8 GBytes of attached SDRAM. Thus, Ethernet MAC DMA and Memory Move DMA
operations are limited to the low 8 GBytes of the physical address space. Memory that is attached to the
Stream Processor through PCI-X may increase total physical memory beyond 8 GBytes. This additional
memory is generally accessible by the processors, and can also be accessed for DMA through the Stream
Processor’s PCI-X DMA controller.

Table 47: DMA Capabilities

Interface Modes
Data BW
(Gbps)

ETH0_Rx streaming 1.0

ETH0_Tx streaming 1.0

ETH1_Rx streaming 1.0

ETH1_Tx streaming 1.0

ETH2_Rx streaming 1.0

ETH2_Tx streaming 1.0

PCIX streaming, memory to memory 2.0

MM memory to memory 10.0

10.2.1. Ethernet and PCI-X DMA Controller Organization

Stream Processor Lexra Inc. Proprietary & Confidential 99
Rev 2.1 August 1, 2002 DO NOT COPY

10.2.1. Ethernet and PCI-X DMA Controller Organization

Figure 18 illustrates the structure of the Stream Processor’s Ethernet and PCI-X DMA controllers, including
the on-chip Ethernet MAC.

The Ethernet and PCI-X DMA Controllers are composed of the following modules:

• Ethernet MAC or PCI-X bridge - Provides standard GMII/MII or PCI-X interface.
Converts the external data paths to internal 250 MHz data paths. Sources input data and
requests output data. The PCI-X bridge also supports transparent master/target access
between the PCI-X bus and the crossbar.

• Input Buffers - Obtains data from the MAC’s input interface. Provides buffering.

• Input Mapper - Parses the beginning of each packet (up to 128 bytes) and generates the
input queue assignments. Passes all packet data and queue assignments to the DMA
engines.

• Crossbar Processor Interface and Queue Management - Provides interface functions
between processors and the DMA controller (through the crossbar). Responds to
uncached load and store instructions that are used to configure the DMA controller,
monitor status and interact with the queue logic.

• DMA Engines and Crossbar Memory Interface - Accepts input packets and queue
assignments from the Input Mapper, and passes output packets to the Output Buffers.
Performs memory reads and writes for descriptors and packet data (through the crossbar).
Includes multiple parallel engines to maintain high concurrency.

• Output Buffers - Provides buffering of transmit data. Supplies data requests to the output
interface.

The Ethernet and PCI-X DMA controllers include a programmable packet mapper that examines each input
packet up to a depth of 128 bytes to determine the ID of a input queue to which the packet is assigned.
Typically, the mapper is programmed to generate a hash number from fields in the layer 3 and 4 headers to
determine the input queue assignment. Alternatively, the mapper can also be programmed to extract a queue
assignment directly from the packet, or perform a round-robin assignment. The mapper is described in more
detail in Sections 10.6.

Figure 18: Ethernet and PCI-X DMA Controller Organization

Output
Buffers

DMA Engines
and Crossbar

Memory Interface
data

commands

I/O Interface

Ethernet MAC
or

PCI-X bridge

crossbar
 interfaces

external
signals

Input
Buffers

Input
Mapper

Crossbar
Command

Interfaceand
Q Mgmt

Input
Data

Output
Data

Transparent Accesses
(PCI-X only)

Chapter 10. Direct Memory Access (DMA)

100 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

The Ethernet and PCI-X DMA controllers provide five categories of queues.

• 128 input pending queues.
• 128 input completed queues.
• 1 high priority output pending queue.
• 1 low priority output pending queue.
• 128 output completed queues.

The output pending queues are shared among all software threads. The association of all other queues to
software threads is under software control. There may be a one-to-one mapping of queues to threads.
Alternatively, a many-to-one mapping allows the software to dynamically adjust the workload by changing
the assignment of input queues to software threads. The DMA controller provides an efficient exclusive
access mechanism for all queues that does not require software to resort to semaphores, even when multiple
threads are accessing the same queue.

Figure 19 illustrates the flow of Ethernet and PCI-X DMA transactions. Two basic alternatives are shown.
One involves software in the recycling of buffers from transmit to receive operations. The other alternative
allows the DMA controller to directly recycle free buffers after a transmit operation is successfully
completed, shown with dotted lines.

To set up an input or output DMA operation, software enqueues a buffer descriptor into a pending queue. The
DMA controller dequeues descriptors from this queue, performs a transfer, and enqueues the descriptor into a
completed queue.

The PCI-X DMA Controller can perform streaming and memory-to-memory DMA operations. While the
PCI-X interface itself is not inherently streaming, the DMA architecture include provisions for transfers to
and from FIFO-like devices on the PCI-X bus. Static addresses may be used for read and write operations on
the PCI-X bus, in contrast to incrementing the address as a transfer progresses The mapper can be used to
parse the headers of streaming PCI-X data to determine the transfer length.

Figure 19: Ethernet and PCI-X DMA Flow

Input
DMA

output
completed
queues

Software
Threads

Output
DMA

software
buffer

recycling

protocol
stack(s)

memory
reads

output
pending
queues

input
completed
queues

memory
writes

input
pending
queues

output
data

input
data

hardware buffer recycling

10.2.2. Memory Move DMA Controller Organization

Stream Processor Lexra Inc. Proprietary & Confidential 101
Rev 2.1 August 1, 2002 DO NOT COPY

10.2.2. Memory Move DMA Controller Organization

Figure 20 illustrates the structure of a the Stream Processor’s Memory Move (MM) DMA controller.

The Memory Move DMA Controller is composed of the following modules:

• Crossbar Processor Interface and Queue Management - Provides interface functions
between processors and the DMA controller (through the crossbar). Responds to
uncached load and store instructions that are used to configure the DMA controller,
monitor is status and interact with the queue logic.

• DMA Engines and Crossbar Memory Interface - Accepts queue information from the
Queue Management logic. Performs memory reads and writes for descriptors and packet
data (through the crossbar). Includes multiple parallel engines to maintain concurrency.

In he MM DMA controller, data is transferred from SDRAM to SDRAM.

The memory to memory DMA controller provides two categories of queues.

• 16 transfer pending queues.
• 16 transfer completed queues.

The association between queues and software threads is software defined.

Figure 21 illustrates the flow of Memory Move DMA transactions.

Figure 20: Memory Move DMA Controller Organization

Figure 21: Memory Move DMA Flow

DMA Engines
and Crossbar

Memory Interface
data

control

crossbar
 interfaces

Crossbar
Command
Interface

and Q Mgmt

DMA

Software
Threads

buffer
recycling

application
code

MM completed
queues

memory
writes

MM pending
queues

memory
reads

Chapter 10. Direct Memory Access (DMA)

102 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

To set up a Memory Move DMA transfer, software enqueues a buffer descriptor into a pending queue. The
DMA controller dequeues descriptors from this queue, performs a transfer, and enqueues the descriptor into a
completed queue.

10.3. Queue Configuration

The location and size of the DMA controller’s queues in main memory are specified with five sets of queue
configuration registers, corresponding to the four queue types. All queues of a type have the same
characteristics, which are governed by the configuration registers.

Table 48 summarizes the registers that configure a queue type. There are four such register sets in the DMA
controller.

The DMA controller also maintains hardware registers specific to each individual queue, which contain the
state summarized in Table 49. These registers are not accessed by software during normal operation.

10.4. Queue Operation

Software follows these steps to enqueue a buffer descriptor.

1. Software executes an uncached load word instruction that targets a memory mapped register
within the DMA controller. (See Table 53.) The DMA controller returns the byte offset of a
newly allocated location in the queue. The DMA controller sets the high order bit (bit 31) in
the returned value if the queue is full, in which case software should repeat step 1. (The DMA
controller can be configured to also cause an interrupt for this condition.)

2. Software adds the byte offset to the logical address of the base of the queue (which it maintains
independent of the DMA controller). The result is a byte pointer to a 64-byte region in memory
that is 64-byte aligned. The Valid flag (in word 0) is currently zero, indicating that the descrip-
tor is currently invalid.

Table 48: Queue Configuration Registers

Name Size (bits) Description

Flags ? Control and status information. TBD.

StartPtr 30 Address of start of queue.
High order 30 bits of a 36-bit pointer (i.e. 64-byte aligned).

Size 20 Number of queue entries.

HighCount 20 High water entry count.

LowCount 20 Low water entry count.

Table 49: Per-Queue State Registers

Name Size (bits) Description

Flags ? Control and status information. TBD.

EnqPtr 20 Current enqueue offset.

DeqPtr 20 Current dequeue offset.

EntryCount 20 Current number of allocated entries.

10.4. Queue Operation

Stream Processor Lexra Inc. Proprietary & Confidential 103
Rev 2.1 August 1, 2002 DO NOT COPY

3. Software writes the required descriptor words, described in Section 10.5. The last write must
be to the word that holds the descriptor’s Valid flag (set to 1) to ensure mutual exclusion with
DMA controller’s access to the queue. After software sets the Valid flag in the descriptor it is
available for use by the DMA controller. Software must not read or write the descriptor after
the Valid flag has been set.

Up to 64 consecutive queue descriptors can be allocated with a single load word instruction in step 1. The
DMA controller provides 64 target addresses for the load word operation in step 1, corresponding to
allocation requests from 1 to 64 entries. The DMA controller reserves the appropriate number of queue
entries before returning the queue offset value. The high order bit is set appropriately to indicate the outcome
of the allocation attempt. When a valid offset is obtained, software must perform steps 2 and 3 for each
allocated descriptor. However, if the software is setting up descriptors specify a series of buffers to transfer a
single packet, the Valid flag for thefirst descriptor must not be set until all other descriptors of the packet
have been written.

Software follows these steps to dequeue a buffer descriptor.

1. Software executes an uncached load word instruction that targets a memory mapped register in
the DMA controller. (See Table 53.) The controller returns the byte offset within the queue of
the buffer descriptor to be dequeued. The DMA controller sets the high order bit (bit 31) in the
returned value if the queue is empty, in which case software should repeat step 1. (The DMA
controller can be configured to also cause an interrupt for this condition.)

2. Software adds the byte offset to logical address of the base of the queue (which it maintains
independent of the DMA controller). The result is a byte pointer to a 64-byte region in memory
that is 64-byte aligned. The Valid flag (in word 0) indicates the validity of the entry. However,
the descriptor is not necessarily valid at this time.

3. If the Valid bit is 0, the queue entry is invalid (i.e. has not yet been updated by the DMA con-
troller). This is a queue underflow condition, and is rare in normal operation. Software must
loop and test the valid bit until it is set to 1 by the DMA controller. Note that the descriptor is
resident in the CPU’s cache, so repeated testing does not cost system performance. Because the
Stream Processor maintains memory coherency, software will automatically observe the new
descriptor contents when it is updated by the DMA controller.

4. Software clears the Valid bit in the descriptor within the queue. After software clears the Valid
flag in the descriptor, the queue entry is free for re-use by the DMA controller. Software must
not read or write the descriptor within the queue after the Valid flag has been cleared. Instead,
it must use its descriptor copy.

For the Ethernet and PCI-X DMA controllers, it is not possible to dequeue multiple entries in step 1.

For the Memory Move DMA controller, up to 64 consecutive queue descriptors can be de-allocated with a
single load word instruction in step 1. The DMA controller provides 64 target addresses for the load word
operation in step 1, corresponding to de-allocation requests from 1 to 64 entries. The DMA controller de-
allocates the appropriate number of queue entries before returning the queue offset value. The high order bit
is set appropriately to indicate the outcome of the de-allocation attempt. When a valid offset is obtained,
software must perform steps 2 through 4 for each de-allocated descriptor.

The association of DMA controller queues to threads is managed by software, and is not known to the DMA
controller. The types of associations have an impact on the amount of memory that can be shared in software.
A globally managed queue may accessed by all software threads. A dedicated queue is accessed only by a
specific software thread. The use of global queues requires globally shared buffers in both the logical and
physical address spaces, which effectively limits DMA buffers to 2 GBytes of SDRAM. The use of dedicated
queues allows separate logical address spaces to be maintained for each software thread (or pools of threads),
which in turn allows DMA buffers to access all 8 GBytes of available SDRAM.

Chapter 10. Direct Memory Access (DMA)

104 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

10.5. Buffer Descriptors

Buffer descriptors are stored in SDRAM resident queues, as described in Section 10.4. A given queue is used
for input, output or memory to memory DMA operations, and holds only the corresponding type of buffer
descriptor. Each descriptor is stored in one 64-byte aligned location within the queue, and includes a pointer
to the data buffer, the buffer size, and other parameters.

The contents of the buffer descriptors are shown in Table 50. The eight columns at the right of the table
correspond to the ways that descriptors may be used:

A code in the eight columns indicate when the descriptor field is used:

Software must supply zeroes for unused fields when writing descriptors. The DMA controller supplies zeroes
for any unused fields when writing descriptors.

IP Input buffer descriptor in Ethernet or PCI-X input pending queue.
IC Input buffer descriptor in Ethernet or PCI-X input completed queue.
OP Output buffer descriptor in Ethernet or PCI-X output pending queue.
OC Output buffer descriptor in Ethernet or PCI-X output completed queue.
DP Destination buffer descriptor in MM pending queue.
DC Destination buffer descriptor in MM completed queue.
SP Source buffer descriptor in MM pending queue.
SC Source buffer descriptor in MM completed queue.

E Ethernet transfer.
P PCI-X transfer.
B Ethernet or PCI-X transfer.
M Memory to memory (SDRAM) transfer.
(blank) Field is not used, must be zero.

Table 50: Buffer Descriptor Contents

Word Field Name Description IP IC OP OC DP DC SP SC

0 31 Valid Indicates the validity of the buffer descriptor.
1 - Descriptor is valid.
0 - Descriptor is not valid.
Set by software when descriptor is enqueued in a pend-
ing queue, cleared by the DMA controller when descrip-
tor is dequeued. Set by the DMA controller when
descriptor is enqueued in a completed queue, cleared by
software when descriptor is dequeued.

B B B B M M M M

0 30 ErrTruncated 1 - Data was truncated because the packet is larger than
the configured maximum packet size. (Configuration
method is TBD.)

0 - Data was not truncated.

E

0 29 ErrUnderrun 1 - Transmit FIFO underrun occurred, and automatic
retransmit was not enabled via DMA configuration.

0 - No underrun occurred.

E

0 28 ErrIPHdrChk 1 - Error in IP header checksum.
0 - P header checksum OK or IP header not checked.

E

0 27 ErrFrameCRC 1 - Error in frame CRC.
0 - Frame CRC OK.

E

0 26 ErrAbort 1 - Packet was aborted by the receiver interface.
0 - Packet was not aborted.

E

10.5. Buffer Descriptors

Stream Processor Lexra Inc. Proprietary & Confidential 105
Rev 2.1 August 1, 2002 DO NOT COPY

0 25 ErrAddr 1 - An address error occurred while transferring data to
or from memory.

0 No address error occurred.

B B M M

0 24 IPHdrChecked 1 - IP header checksum was verified, ErrIPHdr=1 if error.
0 - IP header checksum was not verified.

B

0 23 More 1 - Next descriptor specifies more data or storage for this
transfer.

0 - Data or storage is concluded with this descriptor.

B B B M M M M

0 22 Continuation 1 - Data or storage is continued from previous descriptor.
0 - First descriptor.

B B B M M M M

0 21 Interrupt Enables interrupt generation upon completion of transfer.
The target of the interrupt is defined by the (TBD) regis-
ter. This feature should be used sparingly, as frequent
interrupts can reduce performance substantially.
1 - Generate an interrupt upon completion of the transfer.
0 - No interrupt is generated.

B B B B M M M M

0 20 ZeroBuffer Controls clearing of data buffers after the transfer. When
enabled, the DMA controller writes the entire buffer with
zeroes after the transfer is completed. The BuffSize
value, not the XferSize value, is used to determine the
size of the region that is cleared. The DMA controller
delays enqueueing the descriptor onto the completed
queue until the buffer is cleared.
1 - Clear the buffer after the transfer is completed.
0 - Do not clear the buffer after the transfer.

M M

0 19 InhibitTranfser Inhibits the use of the descriptor for data transfer.
1 - Do not use descriptor for data transfer. Software can

use this mode to measure the elapsed time from soft-
ware enqueue into a pending queue to software
dequeue from a completed queue. For this use, soft-
ware typically puts a timestamp into the pending
descriptor’s SWValue field.
A buffer clear operation without transmission is per-
formed when ZeroBuffer=1 and Inihibit=1 for an out-
put descriptor.

0 - Normal use of descriptor.

B B B B M M M M

0 18 StaticAddress 1 - Do not increment the buffer pointer during data trans-
fer. This mode is used to access a FIFO attached to
the PCI-X bus.

0 - Increment the buffer pointer during data transfer.

P P P P M M M M

0 17:12 (reserved) Must be zero.

11:8 PortNumber DMA interface through which input packet was received.
0 - Ethernet MAC 0.
1 - Ethernet MAC 1.
2 - Ethernet MAC 2.
3 - PCI-X.

B

0 7:0 BuffPtrHi High order 4 bits of the 36-bit byte pointer to the data
buffer. The 4 bits are stored right justified in this 8-bit
field, and the remaining 4 bits of the field must be zero.

B B B B M M M M

1 31:0 BuffPtrLo Low order 32 bits of the 36-bit byte pointer to the data
buffer. For input buffer descriptors, this address must be
64-byte aligned.

B B B B M M M M

Table 50: Buffer Descriptor Contents (Continued)

Word Field Name Description IP IC OP OC DP DC SP SC

Chapter 10. Direct Memory Access (DMA)

106 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

2 31:16 BuffSize For pending descriptors, written by software to indicate
the buffer’s allocated byte size, in 64-byte increments.
For completed descriptors, the DMA controller copies the
value from corresponding pending descriptor. The value
is encoded modulo 64K (65,536). A value of 0 represents
a buffer size of 65,536 bytes. Must be a multiple of 64
bytes.

B B B B M M M M

2 15:0 XferSize Transfer size in bytes, modulo 64K (65,536). Updated by
the DMA controller to indicate the actual number of bytes
transferred.

B B M M

3 31:16 StartOffset Byte offset of first data byte within buffer. For input pack-
ets the cache lines that are skipped as a result of a non-
zero StartOffset are not modified by the DMA controller,
and the contents of the beginning of the first partially
modified cache line are undefined.

B B B M M M M

3 15:8 CompQIfGood Identifies the queue to which the descriptor is enqueued
after the transfer is successfully completed.

B

3 7:0 CompQIfBad Identifies the queue to which the descriptor is enqueued
if the transfer is not successfully completed.

B

4 31:24 TimeStamp An 8-bit packet timestamp, representing the time that the
packet entered the mapper. The 8-bit timestamp is
obtained from timestamp counter, which is described in
Section 10.9

E

4 23:0 (reserved) Must be zero.

5 31:0 SoftwareValue This field is application dependent. Typically it is used to
hold the logical address of the data buffer, or a pointer to
a data structure that software uses to access the data
buffer. The DMA controller preserves the contents of this
field when modifying or copying an input descriptor from
the pending queue to the completed queue. The data in
this field has no effect on packet receipt or transmission.

B B B B M M M M

6 31:16 Checksum Updated with the 16-bit one's complement of the one's
complement sum of all 16-bit words in the packet, not
including the MAC header. If the data to be check-
summed consists of an odd number of bytes, the last
byte is right-padded with zeroes for the purpose of the
checksum calculation.

B M

6 15:8 DestOffset Offset of the destination buffer descriptor, relative to the
location of this descriptor. This field is valid only in the
first descriptor of a memory-to-memory copy, which is the
first source buffer descriptor.

M M M M

6 7:0 (reserved) Must be zero.

7 31:0 MapperOut0 The contents of mapper output registers R0 through R3
at the conclusion of the mapper program.

B

8 31:0 MapperOut1 The contents of mapper output registers R4 through R7
at the conclusion of the mapper program.

B

9 31:0 MapperOut2 The contents of mapper output registers R8 through R11
at the conclusion of the mapper program.

B

10 31:0 MapperOut3 The contents of mapper output registers R12 through
R15 at the conclusion of the mapper program.

B

Table 50: Buffer Descriptor Contents (Continued)

Word Field Name Description IP IC OP OC DP DC SP SC

10.5. Buffer Descriptors

Stream Processor Lexra Inc. Proprietary & Confidential 107
Rev 2.1 August 1, 2002 DO NOT COPY

The following figures illustrate the relationships between queues, the buffer descriptors, and buffers.

11 31:0 DeviceStatus0 Status bits supplied by the interface device after comple-
tion of transfer. See Section 11.3.

B B

12 31:0 DeviceStatus1 Status bits supplied by the interface device after comple-
tion of transfer. See Section 11.3.

B B

13-
15

31:0 (pad) Pad descriptor to 64 bytes.

Figure 22: Input Pending Queue

Table 50: Buffer Descriptor Contents (Continued)

Word Field Name Description IP IC OP OC DP DC SP SC

queue

descriptor

descriptor

descriptor

descriptor

buffer

(free)

buffer

(free)

buffer

(free)

buffer

(free)

Chapter 10. Direct Memory Access (DMA)

108 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Figure 23: Input Completed, Output Pending, Output Completed Queues

Figure 24: Memory to Memory Copy Pending and Completed Queues

queue

descriptor

descriptor
More

descriptor
More, Cont

descriptor
Cont

buffer

Packet A

buffer

Packet B

buffer

Packet B

buffer

Packet B

queue

src descriptor
More

src descriptor
More, Cont

src descriptor
Cont

des descriptor

buffer

Source A

buffer

Source A

buffer

Source A

buffer

Dest A

10.6. Input Queue Assignment with Packet Mapper

Stream Processor Lexra Inc. Proprietary & Confidential 109
Rev 2.1 August 1, 2002 DO NOT COPY

When software does not employ page-level logical to physical address mapping, there are no restrictions on
the sizes and page alignment of individual buffers. The direct mapping approach imposes very little overhead
on buffer management, but exposes all of memory to different processes and requires more complex safe
programming practices. Page level mapping requires more overhead in buffer management, but shields
processes from each other. The method used for a given operating system and application depends on
required levels of performance and protection.

Software that uses page-level mapping must ensure that individual data buffers fit within a page of memory,
as defined by the MMU TLB settings. In its logical address space a buffer may have an arbitrary size and
page alignment. Due to page-level logical to physical address mapping, a data region that spans more than
one logical page cannot be expected to reside in contiguous physical pages. It is the responsibility of software
to account for this by constructing an appropriate list of buffer descriptors.

10.6. Input Queue Assignment with Packet Mapper

The Ethernet and PCI-X DMA controllers include a packet mapper that determines the pending and
completed queue assignments for inbound packets. The mapper parses packets to a depth of 128 bytes to
identify protocols and extract bit fields. Programmable mapper functions operate on extracted bits to generate
the assigned packet queue numbers and other values as shown in 25.

When the Stream Processor is reset, the mapper is disabled and all register contents are cleared to zero. Until
the mapper program is loaded, all input packets bypass the mapper and are referred to input pending queue 0
and input completed queue 0. The mapper program is loaded with a Lexra-supplied API that runs on one of
the Stream Processor’s CPUs, typically during system initialization. The API copies the program binary from
the Stream Processor’s shared SDRAM into the mapper’s control store by storing the program words into
memory-mapped locations that fall within the mappers configuration space. When the copying is completed,
the API enables mapper operation by setting a bit in a mapper control register.

Figure 25: Packet Mapper Data Flow

Control
Store

Packet Data
 from Input FIFO

Parse
and

Extract

Extracted Fields

Output values to DMA engine:
 input pending queue number
input completed queue number

 drop flag
 fill size
 user defined values

Packet data to DMA engine.

Mapper Functions
and Registers

Packet Mapper

All Packet Data

first 128 bytes

Chapter 10. Direct Memory Access (DMA)

110 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

A total of sixteen general purpose 8-bit registers are available to the mapper’s user program. When the
mapper program has completed processing of the first 128 bytes, the final contents of these registers are
passed to the DMA engines and determine how the packet will be handled. (See Table 51.)

A variety of queue assignment schemes can be programmed. For example, packet field values can directly
determine the assigned queues. Alternatively, the packet field values can be constructed into a key that is
hashed to distribute the packets among a pool of queues. Hash keys can be selected such that related packets
are always assigned to the same queue. These details are application-dependent, and are supported with the
mapper’s programmable architecture.

The mapper’s parser validates each packet and passes packet fields to the field processing functions. Table 52
summarizes the field processing functions that are supported. The following conventions are used:

Table 51: Mapper Registers

Register Bits Use Upon Completion of Program

0 7:0 Input pending queue assignment.

1 7:0 Input completed queue assignment.

2 7:3 Reserved. Must be zero.

2 2:1 Fill size (0 to 64 bytes).

2 0 Packet drop flag.

3 7:0 Byte offset for start of CRC calculation.

4-15 7:0 User defined values written to descriptor.

boldface Statement keywords.
statements One or more of the statements listed in Table 52.
reg Identifies one of 16 general-purpose 8-bit registers. The final

values of the following registers determine how the packet is
handled by the DMA engines. See Table 51

packet_field Identifiles a bit field from the parsed packet. This consists of
the field name from the formal packet description, followed
by an optional bit range in square brackets. Bits are
numbered with 0 in the least signficant bit position.

constant8 An 8-bit constant specified with standard Verilog notation
constant Any size constant specified with standard Verilog notation.

Table 52: Field Processing Statements

Statement Description

reg = constant8; Load register with 8-bit constant.

reg ← packet_field

regd = regs; Copy register contents.

regd ← regs

10.6. Input Queue Assignment with Packet Mapper

Stream Processor Lexra Inc. Proprietary & Confidential 111
Rev 2.1 August 1, 2002 DO NOT COPY

reg = packet_field; Load register from packet field.

reg ← packet_field
The data from packet_field is loaded right-justified into reg. The field must specify
8 bits or less of data.

reg = offset (packet_field); Load register with byte offset of packet field.

reg ← offset (packet_field)

The byte offset of the beginning of packet_field relative to the start of the frame is
loaded into reg.

reg = reg & constant8; Load register with bit-wise AND of register contents and 8-bit constant.

reg ← reg & constant8

reg = reg + constant8; Load register with sum of register contents and 8-bit constant.

reg ← reg + constant8

reg = rotr (reg); Rotate register right by 1 bit.

save ← reg[0]
reg[6:0] ← reg[7:1]
reg[7] ← save

reg = rotl (reg); Rotate register left by 1 bit.

save ← reg[7]
reg[7:1] ← reg[6:0]
reg[0] ← save

reg = crc8 (reg, packet_field); CRC-8 accumulation of register with packet field.

reg ← crc8 (reg, packet_field)

The data specified by packet_field is right-padded to an 8-bit boundary and is
CRC8-accumulated with the current contents of reg. The result is stored in reg.

reg = xor8 (reg, packet_field); 8-bit XOR accumulation of register with packet field.

reg ← XOR8 (reg, packet_field)

The data specified by packet_field is right-padded to an 8-bit boundary. Individual
bytes from the padded field are XOR-accumulated with the current contents of
reg. The result is stored into reg.

finish ; Finish program.

The mapper terminates processing of the current packet. Packet data and register
values are passed to the DMA engine. The mapper waits for a new packet.

if (expression)
 { statements }

If statement.

If expression evaluates true, execute the statements in the if clause.
The expression is one of the following forms.

reg == constant8
reg <= constant8 (unsigned arithmetic)
packet_field == constant
packet_field <= constant (unsigned arithmetic)

Table 52: Field Processing Statements (Continued)

Statement Description

Chapter 10. Direct Memory Access (DMA)

112 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

By assigning values to the output registers, the user’s mapper program determines the input pending and
input completed queues that are used to process a packet. The association of these queues to software threads
is managed in the software domain, and is not known to the DMA controller. Although it is possible for any
software thread to dequeue a packet from any queue, software typically assigns queues to specific threads.
The queue to thread associations that are maintained by software need not be static. An efficient form of load
balancing can be implemented in software by configuring sufficiently more input queues than threads, and
modifying the queue to thread associations when a thread workload imbalance arises.

Figure 26 illustrates an example use of the mapper. It discriminates three types of traffic, and directs each
packet type to a pool of queues reserved for that type. Application specific software threads in turn dequeue
packets from their assigned queues. The figure also illustrates how software can perform load balancing by
modifying the queue to thread associations.

1. The DMA controller directs the first 128 bytes of each input packet to the mapper.

2. The mapper program parses the packet to determine the packet type.

3. Depending on the type, the mapper program selects hash key fields from the packet and accu-
mulates a hash number. The hash number is added to base numbers to determine the input
pending and input completed queues from pools that are dedicated to the packet type. Alterna-
tively, a direct queue assignment can be made based on the protocol type.

4. The DMA controller dequeues a descriptor from the assigned input pending queue, performs
the DMA transfer, and enqueues the descriptor to the assigned input completed queue.

5. The software thread that is responsible for the input completed queue dequeues the packet.

6. Software processes the packet.

7. Software typically maintains state for the packet and other packets in the same microflow.

8. Software can re-assign an entire input completed queue and associated state to a different
thread. This process is efficient if software maintains separate microflow state tables for each
queue.

if (expression)
 { statements }
else
 { statements }

If-else statement.

If expression evaluates true, execute the statements in the if clause. Otherwise
execute the statements in the else clause. The expression forms are listed above.

Table 52: Field Processing Statements (Continued)

Statement Description

10.7. Inserting Leading Fill Into Input Packets

Stream Processor Lexra Inc. Proprietary & Confidential 113
Rev 2.1 August 1, 2002 DO NOT COPY

10.7. Inserting Leading Fill Into Input Packets

When the mapper program completes the processing of a packet, the value in mapper register 2 specifies the
number of zero fill bytes (0 to 64) to insert at the front of the packet in memory.

One use of fill is to align frequently accessed packet fields at a 32-bit word boundary in memory to allow
efficient access to the fields from the application running on the Stream Processor’s CPUs. For example,
without inserting fill an IP header within a MAC frame would start at a half-word boundary and unaligned
loads would be required to reference the 32-bit fields within the IPv4 and higher layer headers. When the
mapper is programmed to insert two bytes of fill at the start of a MAC frame, the application can access the
32-bit fields with aligned memory references.

Another use of fill is to make room for proprietary headers that are subsequently updated and maintained by
the application.

Figure 26: Input Mapping and Workload Assignment

Hash

HashParse

assignable
workload

Input
Packets

Input
Queues

Software
Threads

Microflow
State

Input
Mapping

1
2 3 4

5 6 7

8

DMA

DMA

DMA

Chapter 10. Direct Memory Access (DMA)

114 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

10.8. Skipping Leading Fill From Output Packets

Skipping data from an output packet is the analogous to inserting fill into input packets, as described in the
previous section. When an application running on the Stream Processor’s CPUs prepares an output packet,
the most efficient program execution is realized if packet headers are properly aligned in memory. If the
output packet was originally an input buffer, fill bytes may have been inserted by the user’s mapper program.
(The number of fill bytes inserted by the mapper can be find in the MapperOut0 word of the buffer
descriptor.) If the packet is held in a buffer created by CPU software, fill bytes may have been inserted by the
software. In either case, software can cause the fill bytes to be skipped when the packet is enqueued to the
DMA controller for an output operation by storing an appropriate value the StartOffset field of the output
descriptor. Note that skipping leading fill for output packets does not involve the DMA controller’s mapper.

10.9. Input Packet Timestamp

The Ethernet DMA controller generates an 8-bit timestamp for all input packets and includes it in the
descriptor that is written to the input completed queue. The timestamp is derived from a 24-bit free-running
counter that increments every 256 ns (about 1/2 the time for a minimum size packet). A configuration register
(TBD) controls the selection of the contiguous 8-bit field from the counter that is used as the timestamp. The
timestamp is captured at the moment the first byte of a packet enters the packet mapper.

A software thread that manages multiple input queues can use the timestamp to ensure that it services the
queues fairly.

10.10. Output Queue Selection

The Ethernet and PCI-X DMA controllers provide a low priority output pending queue and a high priority
output pending queue. The DMA controller services all entries in the high priority output queue ahead of any
entries in the low priority queue.

10.11. Interrupts

Interrupts can be enabled independently for controller and targeted to specific CPU contexts and interrupt
lines. The following interrupt events can be enabled per queue.

• Queue underflow.
• Queue overflow.
• Low water crossing.
• High water crossing.
• Packet-specific events as defined in buffer flags (See Table 50 on page 104.)
• First packet, i.e. a input packet is enqueued to a previously empty queue.

The generation of an interrupt for the first packet can be delayed up to TBD processor cycles. This allows the
application to establish a maximum interrupt delay for low rate data streams without causing excessive
interrupts when a burst of packets arrives.

10.12. Checksum Calculation

Stream Processor Lexra Inc. Proprietary & Confidential 115
Rev 2.1 August 1, 2002 DO NOT COPY

10.12. Checksum Calculation

The DMA controller performs checksum calculations for data transferred in streaming and memory to
memory modes.

• The Ethernet DMA controller verifies the IP header checksum of input packets and stores
the result in ErrIPHdrChk flag of the buffer descriptor.

• The Ethernet DMA controller calculates the 16-bit checksum over the entire input packet,
starting at a byte offset that is determined by the packet mapper and excluding the trailing
FCS field. The result is stored in the Checksum field of the buffer descriptor.

• The memory to memory and PCI-X controllers calculate the 16-bit checksum over the
entire data transfer and stores the result in the Checksum field of the destination buffer
descriptor.

Software can utilize the Checksum in the buffer descriptor of packets received through Ethernet DMA to
simplify the calculation of higher layer checksums such as TCP and UDP. To compute the TCP checksum,
for example, software can subtract IP header contents from the entire packet Checksum value.

10.13. Error Detection and Handling

The following error conditions are detected by the DMA controller.

• Bus error.
• Bad frame.
• MAC status.
• Output FIFO underflow.
• Input FIFO overflow.
• Interface parity error.
• Internal SRAM parity error.

All errors are indicated in descriptor that is enqueued on the transfer completed queue. The DMA controllers
can be also configured signal a hardware error in the event of parity error. See Chapter 17.

Additional details to be supplied.

Chapter 10. Direct Memory Access (DMA)

116 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

10.14. Memory Bandwidth Requirement

Figure 27 shows the memory bandwidth required for the DMA of different packet sizes through the Gigabit
Ethernet interface. For example, receiving 500 byte packets over a 1 Gbps interface requires about 1.5 Gbps
of memory bandwidth.

There are several important characteristics of this curve. First, the total memory bandwidth required generally
decreases as the packet size increases. This is because a fixed amount of memory bandwidth overhead is
present for each packet, due the buffer descriptors which must be read and written by the DMA controller.
Second, the curve shows spikes as a result of 64-byte quantization that occurs when data is transferred.

Figure 27: Gigabit Ethernet Memory Bandwidth Requirement

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

64 564 1064 1564

Packet Size (bytes)

M
e

m
o

ry

B
a

n
d

w
id

th
 R

e
q

u
ir

e
m

e
n

t

(G
b

p
s

)

10.15. DMA Controller Registers

Stream Processor Lexra Inc. Proprietary & Confidential 117
Rev 2.1 August 1, 2002 DO NOT COPY

10.15. DMA Controller Registers

All DMA capabilities are accessed through registers that are mapped within the in a 64 KByte address space
that is dedicated to each DMA controller. This region also provides access specific interface functions, as
summarized in Section 11.4. Table 53 summarizes the DMA controller’s queue access, configuration and
status registers. The system address of each register is determined by adding the offset to the applicable base
value defined in Section 5.5

Table 53: MAC Configuration and Status Registers

Offset Bit Definition Access Reset

Ethernet and PCI-X Enqueue and Dequeue Operations

0x0000
0x0004

.

.

.
0x00FC

31:0
31:0

.

.

.
31:0

Input pending queue 0, enqueue 1 entry.
Input pending queue 0, enqueue 2 entries.

.

.

.
Input pending queue 0, enqueue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

0x0100
0x0104

.

.

.
0x01FC

31:0
31:0

.

.

.
31:0

Input pending queue 1, enqueue 1 entry.
Input pending queue 1, enqueue 2 entries.

.

.

.
Input pending queue 1, enqueue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0x7F00
0x7F04

.

.

.
0x7FFC

31:0
31:0

.

.

.
31:0

Input pending queue 127, enqueue 1 entry.
Input pending queue 127, enqueue 2 entries.

.

.

.
Input pending queue 127, enqueue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

0x8000
0x8004

.

.

.
0x81FC

31:0
31:0

.

.

.
31:0

Input complete queue 0, dequeue 1 entry.
Input complete queue 1, dequeue 1 entry.

.

.

.
Input complete queue 127, dequeue 1 entry.

Read
Read

.

.

.
Read

0
0
.
.
.
0

0x8200
0x8204

.

.

.
0x82FC

31:0
31:0

.

.

.
31:0

Output pending queue 0, enqueue 1 entry.
Output pending queue 0, enqueue 2 entries.

.

.

.
Output pending queue 0, enqueue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

0x8300
0x8304

.

.

.
0x83FC

31:0
31:0

.

.

.
31:0

Output pending queue 1, enqueue 1 entry.
Output pending queue 1, enqueue 2 entries.

.

.

.
Output pending queue 1, enqueue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

0x8400
0x8404

.

.

.
0x85FC

31:0
31:0

.

.

.
31:0

Output complete queue 0, enqueue 1 entry.
Output complete queue 1, enqueue 1 entry.

.

.

.
Output complete queue 127, enqueue 1 entry.

Read
Read

.

.

.
Read

0
0
.
.
.
0

Chapter 10. Direct Memory Access (DMA)

118 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Memory Move Enqueue and Dequeue Operations

0x0000
0x0004

.

.

.
0x00FC

31:0
31:0

.

.

.
31:0

Transfer pending queue 0, enqueue 1 entry.
Transfer pending queue 0, enqueue 2 entries.

.

.

.
Transfer pending queue 0, enqueue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

0x0100
0x0104

.

.

.
0x01FC

31:0
31:0

.

.

.
31:0

Transfer pending queue 1, enqueue 1 entry.
Transfer pending queue 1, enqueue 2 entries.

.

.

.
Transfer pending queue 1, enqueue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0x0F00
0x0F04

.

.

.
0x0FFC

31:0
31:0

.

.

.
31:0

Transfer pending queue 16, dequeue 1 entry.
Transfer pending queue 16, enqueue 2 entries.

.

.

.
Transfer pending queue 16, enqueue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

0x1000
0x1004

.

.

.
0x10FC

31:0
31:0

.

.

.
31:0

Transfer complete queue 0, dequeue 1 entry.
Transfer complete queue 0, dequeue 2 entries.

.

.

.
Transfer complete queue 0, dequeue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

0x1100
0x1104

.

.

.
0x11FC

31:0
31:0

.

.

.
31:0

Transfer complete queue 1, dequeue 1 entry.
Transfer complete queue 1, dequeue 2 entries.

.

.

.
Transfer complete queue 1, dequeue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0x0F00
0x0F04

.

.

.
0x0FFC

31:0
31:0

.

.

.
31:0

Transfer complete queue 16, dequeue 1 entry.
Transfer complete queue 16, dequeue 2 entries.

.

.

.
Transfer complete queue 16, dequeue 64 entries.

Read
Read

.

.

.
Read

0
0
.
.
.
0

Ethernet and PCI-X Mapper Configuration and Status Registers

0x8680 31:16 Maximum instruction count. Read/Write 0

0x8680 7:0 Interface clock divider. Read/Write 0

0x8684 11:0 Mapper instruction store deposit/examine address. Read/Write 0

0x8688 18:0 Mapper instruction store deposit/examine data. Read/Write 0

Table 53: MAC Configuration and Status Registers (Continued)

Offset Bit Definition Access Reset

Stream Processor Lexra Inc. Proprietary & Confidential 119
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 11. Ethernet Media Access Controller (MAC)

11.1. Ethernet Media Access Controller Overview

The Stream Processor provides three (3) Media Access Controllers (MACs), each connected to a dedicated
DMA Controller. This chapter describes the operation of the MACs. The DMA operation is described
separately in Chapter 10.

Ethernet is a widely used packet communications protocol. Its operation is specified by the IEEE 802.3 series
of documents. In particular, the MACs in the Stream Processor are compliant with 802.3, 802.3u, 802.3x,
802.3z, and 802.3ac. They can be connected to external 10/100/1000 Mbps PHYs through Gigabit Media
Independent Interfaces (GMII).

The Ethernet Media Access Controller provides the following:

• 10/100 Mbps full- and half-duplex operation.

• 1000 Mbps full-duplex operation.

• GMII/MII interface with PHY management.

• Unbounded frame size.

• Automatic pad and CRC appending.

• Configurable deference.

• PAUSE frame flow control.

• Error condition signalling.

• Metering and statistics data.

Figure 28: Ethernet Media Access Controller Connectivity

GMII or MII
(3)

Stream Processor

LX4580
CPU
(4)

Ethernet
Media Access

Controller
(3)

Crossbar
interface

&
DMA Controller

(3)

Crossbar

Chapter 11. Ethernet Media Access Controller (MAC)

120 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

11.2. Gigabit Media Independent Interface (GMII)

Each MAC can be connected to an external PHY using a standard GMII/MII interface augmented with two
optional clock enable pins from the PHY: RXCEN and TXCEN.

11.3. Error Signalling and Statistics Reporting

After the reception or transmission of each frame, the MAC generates a status vector containing error and
statistics information, including the link condition, deference delay, frame length consistency, and payload
integrity. The DMA Controller attached to the MAC saves this information for later use by software.

Table 54: GMII External Interface

Name Pins Direction Description

COL 1 input Collision detect from PHY.

CRS 1 input Carrier sense from PHY.

MDC 1 output Management clock to PHY.

MDIO 1 inout Management data to/from PHY.

RX_CLK 1 input Receive clock from PHY.

RX_DV 1 input Receive data valid from PHY.

RX_ER 1 input Receive error control from PHY.

RXCEN 1 input Receive clock enable from PHY.

RXD[7:0] 8 input Receive data from PHY.

GTX_CLK 1 input Transmit reference clock.

TX_CLK 1 output Transmit clock to PHY.

TX_EN 1 output Transmit data enable to PHY.

TX_ER 1 output Transmit error control to PHY.

TXCEN 1 input Transmit clock enable from PHY.

TXD[7:0] 8 output Transmit data to PHY.

Table 55: Receive Status Vector

Bit Definition

32 Frame Truncated

31 Long Frame

30 VLAN Tag Detected

29 Unsupported Opcode

28 PAUSE Control Frame

27 Control Frame

26 Dribble Nibble

11.3. Error Signalling and Statistics Reporting

Stream Processor Lexra Inc. Proprietary & Confidential 121
Rev 2.1 August 1, 2002 DO NOT COPY

25 Broadcast Frame

24 Multicast Frame

23 OK

22 Length Out Of Range

21 Length Check Error

20 CRC Error

19 Code Error

18 False Carrier

17 Short Frame

16 Previous Packet Dropped

15:0 Byte Count

Table 56: Transmit Status Vector

Bit Definition

51 VLAN Tagged Frame

50 Back-pressure Applied

49 PAUSE Control Frame

48 Control Frame

47:32 Total Bytes Transmitted

31 Under-run

30 Long Frame

29 Late Collision

28 Maximum Collisions

27 Excessive Defer

26 Packet Defer

25 Broadcast Frame

24 Multicast Frame

23 Done

Table 55: Receive Status Vector (Continued)

Bit Definition

Chapter 11. Ethernet Media Access Controller (MAC)

122 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

11.4. Registers

All MAC capabilities are accessed through registers that are mapped within the in a 64 KByte address space
that is dedicated to each DMA controller. This region also provides access to other DMA functions, as
summarized in Table 53 on page 117.

Table 57 summarizes the MAC configuration and status registers. The system address of each register is
determined by adding the offset to the applicable base value defined in Section 5.5.

22 Length Out Of Range

21 Length Check Error

20 CRC Error

19:16 Collision Count

15:0 Byte Count

Table 57: MAC Configuration and Status Registers

Offset Bit Definition Access Init

MAC Configuration and Status Registers

0x8600 31 Soft reset.
Resets all of the MAC except the host interface.

Read/Write 1

0x8600 30 Simulation reset. Read/Write 0

0x8600 19 RX control reset. Read/Write 0

0x8600 18 TX control reset. Read/Write 0

0x8600 17 RX data reset. Read/Write 0

0x8600 16 TX data reset. Read/Write 0

0x8600 8 Loop back. Read/Write 0

0x8600 5 RX flow control enable. Read/Write 0

0x8600 4 TX flow control enable. Read/Write 0

0x8600 3 Synchronized RX enable. Read 0

0x8600 2 RX enable. Read/Write 0

0x8600 1 Synchronized TX enable. Read 0

0x8600 0 TX enable. Read/Write 0

0x8604 15:12 Preamble length. Read/Write 7

0x8604 9:8 Interface mode.
 1 = 10Mbps/100Mbps.
 2 = 1000Mbps.

Read/Write 0

0x8604 5 Maximum frame disable. Read/Write 0

Table 56: Transmit Status Vector (Continued)

Bit Definition

11.4. Registers

Stream Processor Lexra Inc. Proprietary & Confidential 123
Rev 2.1 August 1, 2002 DO NOT COPY

0x8604 4 Length field check enable. Read/Write 0

0x8604 2 Pad and CRC enable. Read/Write 0

0x8604 1 CRC enable. Read/Write 0

0x8604 0 Full-duplex. Read/Write 1

0x8608 30:24 IPGR1 carrier window. Read/Write 64

0x8608 22:16 IPGR2 carrier window. Read/Write 96

0x8608 15:8 Minimum inter-frame gap. Read/Write 80

0x8608 6:0 Minimum inter-packet gap. Read/Write 96

0x860C 23:20 Alternate back-off limit. Read/Write 10

0x860C 19 Alternate back-off enable. Read/Write 0

0x860C 18 Back-pressure no back-off.
Retransmit immediately during back-pressure.

Read/Write 0

0x860C 17 No Back-off.
Retransmit immediately after collision.

Read/Write 0

0x860C 16 Maximum defer disable. Read/Write 1

0x860C 15:12 Maximum defer limit. Read/Write 15

0x860C 9:0 Collision window. Read/Write 55

0x8610 15:0 Maximum frame length. Read/Write 1536

0x8620 31 Management reset. Read/Write 0

0x8620 5 Multi-PHY scan enable.

Read round-robin from 32 attached PHYs.

Read/Write 0

0x8620 4 Preamble suppression.
IEEE 802.3/22.2.4.4.2.

Read/Write 0

0x8620 2:0 Management clock select.
 0 = 31.25Mhz
 1 = 31.25Mhz
 2 = 20.83Mhz
 3 = 15.63Mhz
 4 = 12.50Mhz
 5 = 8.93Mhz
 6 = 6.25Mhz
 7 = 4.46Mhz

Read/Write 0

0x8624 1 Scan cycle.
Execute continuous management read from PHY.

Read/Write 0

0x8624 0 Read cycle.
Execute single management read from PHY.

Read/Write 0

0x8628 12:8 PHY address. Read/Write 0

0x8628 4:0 Register address. Read/Write 0

Table 57: MAC Configuration and Status Registers (Continued)

Offset Bit Definition Access Init

Chapter 11. Ethernet Media Access Controller (MAC)

124 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

0x862C 15:0 Register write data Write 0

0x8630 15:0 Register read data. Read 0

0x8634 2 Register data not valid. Read 0

0x8634 1 Scan cycle in progress. Read 0

0x8634 0 PHY access in progress. Read 0

0x8638 31 Interface reset.
Reset only host interface.

Read/Write 0

0x8638 27 TBI mode. Read/Write 0

0x8638 26 Half-duplex GMII mode. Read/Write 0

0x8638 25 Half-duplex MII mode. Read/Write 0

0x8638 24 PHY mode. Read/Write 0

0x8638 23 MII reset. Read/Write 0

0x8638 16 Speed select.
 0 = 10Mbps
 1 = 100Mbps

Read/Write 0

0x8638 15 Cipher reset. Read/Write 0

0x8638 10 Force transmit quiet. Read/Write 0

0x8638 9 Cipher disable. Read/Write 0

0x8638 8 Link fail disable. Read/Write 0

0x8638 7 GPSI reset. Read/Write 0

0x8638 0 Jabber protection enable. Read/Write 0

0x863C 9 Excessively deferring. Read 0

0x863C 8 Misconfigured interface. Read 0

0x863C 7 Jabber detected. Read 0

0x863C 6 Link OK. Read 0

0x863C 5 Full-duplex. Read 0

0x863C 4 Speed setting.
 0 = 10Mbps
 1 = 100Mbps

Read 0

0x863C 3 Link fail. Read 0

0x863C 2 Loss of carrier. Read 0

0x863C 1 SQE error. Read 0

0x863C 0 Jabber detected. Read 0

0x8640 31:24 Station address octet 1. Read/Write 0

Table 57: MAC Configuration and Status Registers (Continued)

Offset Bit Definition Access Init

11.4. Registers

Stream Processor Lexra Inc. Proprietary & Confidential 125
Rev 2.1 August 1, 2002 DO NOT COPY

0x8640 23:16 Station address octet 2. Read/Write 0

0x8640 15:8 Station address octet 3. Read/Write 0

0x8640 7:0 Station address octet 4. Read/Write 0

0x8644 31:24 Station address octet 5. Read/Write 0

0x8644 23:16 Station address octet 6. Read/Write 0

Table 57: MAC Configuration and Status Registers (Continued)

Offset Bit Definition Access Init

Chapter 11. Ethernet Media Access Controller (MAC)

126 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 127
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 12. PCI-X Bridge (PXB)

12.1. PCI-X Bridge Overview

The Stream Processor’s PCI-X bridge allows a standard connection to be made from the Stream Processor to
other devices in the system. The bridge includes a dedicated DMA Controller. This chapter describes the
operation of the PCI-X bridge. The DMA programming architecture is described separately in Chapter 10.

The PCI-X Bridge provides the following:

• 133 MHz, 32-bit operation.

• 4.2 Gbps bandwidth.

• TBD configurable address windows.

• Internal or external arbiter.

• As bus master, supports

• Access from LX4580 CPUs to PCI-X bus devices.
• Access from dedicated PCI-X DMA controller to PCI-X bus devices.
• Non-coherent line reads and writes to PCI-X memory.
• Non-coherent sub-line (I/O) reads and writes.
• PCI-X configuration cycles.

• As a bus target, supports

• Coherent line reads and writes to the Stream Processor’s attached SDRAM.

• Non-coherent sub-line (I/O) reads and writes to the Stream Processor’s UART, I2C
and Generic I/O modules.

• Non-coherent line reads and writes to the Stream Processor’s Generic I/O module.
• PCI-X configuration cycles.

Devices on the PCI-X bus may signal interrupts to the LX4580 CPUs over the Stream Processor’s external
level-sensitive interrupt inputs (See Section 4.2.1).

Figure 29: Overview of PCI-X Bridge

PCI-X
bus

Stream Processor

LX4580
CPU
(4)

Crossbar
interface

&
DMA Controller

PCI-X
Bridge

Crossbar

Chapter 12. PCI-X Bridge (PXB)

128 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

12.2. PCI-X Interface

12.3. PCI-X Arbitration

The PCI-X bridge includes an internal arbiter that supports four masters - three external masters and the
bridge itself. The internal arbiter may be disabled via a configuration register, in which case the bridge
communicates with an external arbiter through a request/grant signal pair.

Details of the internal arbiter to be supplied.

Table 58: PCI-X Interface

Name Pins Direction Description

PCIX_CLK 1 input Clock

PCIX_PAR 1 inout Parity.

PCIX_RST_N 1 input Reset.

PCIX_AD[31:0] 32 inout Address or data.

PCIX_CBE_N[3:0] 4 inout Command and byte enable flags.

PCIX_FRAME_N 1 inout Frame.

PCIX_IRDY_N 1 inout Initiator ready.

PCIX_TRDY_N 1 inout Target ready.

PCIX_STOP_N 1 inout Stop.

PCIX_DEVSEL_N 1 inout Device select.

PCIX_IDSEL 1 input Initialization device select.

PCIX_LOCK_N 1 inout Lock target.

PCIX_PERR_N 1 inout Parity error.

PCIX_SERR_N 1 inout System error.

PCIX_REQ_N 1 output Stream Processor’s request to external arbiter.

PCIX_GNT_N 1 input Grant from external arbiter.

PCIX_REQIN_N[2:0] 3 input Requests from external PCI devices to Stream
Processor’s internal arbiter.

PCIX_GNTOUT_N[2:0] 3 output Grants to external PCI devices to Stream Proces-
sor’s internal arbiter.

12.4. PCI-X Master Operation

Stream Processor Lexra Inc. Proprietary & Confidential 129
Rev 2.1 August 1, 2002 DO NOT COPY

12.4. PCI-X Master Operation

The PCI-X bridge operates as a PCI-X master. Internal transactions received from the bridge’s dedicated
DMA controller an the LX4580 CPUs (through the crossbar) are converted to PCI-X bus transactions as
listed in Table 59. Coherency isnot maintained for accesses made from the CPUs to PCI-X bus.

12.5. PCI-X Target Operation

The PCI-X bridge operates as a PCI-X target. PCI-X transactions that target the bridge are converted into
crossbar transactions as listed in Table 60. These transactions may reference main memory and the I2C,
UART and GIO interfaces. Access to main memory from the PCI-X bus is coherent with L1 and L2 caches.

12.6. PCI-X Registers

To be supplied.

Table 59: Conversion of Internal Transactions to PCI-X Transactions

Internal Transaction PCI-X Transaction

Line Read Memory Read Block (64 bytes)

Line Write Memory Write Block (64 bytes)

Sub-line Read (1, 2 or 4 bytes) Memory Read Block (1, 2 or 4 bytes)

Sub-line Write (1, 2 or 4 bytes) Memory Write (1, 2 or 4 bytes)

Table 60: PCI-X Transactions to Crossbar Transactions

PCI-X Transaction Crossbar Transaction

Memory Read Block Line Read(s). As many line reads as required
are issued to satisfy the size of the PCI-X
transaction. The address and size of the Mem-
ory Read Block command need not be aligned
to 64 bytes. Data is truncated as needed
before it is sourced on the PCI-X bus.

Memory Write Block Line Write(s). As many line writes as required
are issued to satisfy the size of the PCI-X
transaction. The address and size of the Mem-
ory Write Block command need not be aligned
to 64 bytes. Write merging with current mem-
ory contents is performed as needed.

Memory Read Block (1, 2 or 4 bytes) Sub-line Read (1, 2 or 4 bytes)

Memory Write (1, 2 or 4 bytes) Sub-line Write (1, 2 or 4 bytes)

Chapter 12. PCI-X Bridge (PXB)

130 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 131
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 13. System Control Module (SC)

13.1. System Control Module Overview

The Stream Processor’s System Control Module (SC) functions provide:

• I2C interface to external devices.

• Cross-interrupt message reflection.

• Two general-purpose 32-bit countdown timers with interrupts.

• One RS-232 serial UART

• A generic I/O interface for up to 4 external devices.

The crossbar ports connect to a shared peripheral bus, the Peri Bus. The crossbar SC output module is the
only initiator of peripheral bus transactions, and it initiates a transaction for each crossbar message received.
The SC input module captures read data, error responses, or write acknowledgements from the peripherals
and generates an appropriate crossbar response message. Only one transaction at a time is in progress in the
SC, though multiple transactions may be buffered in the output module fifo.

The address driven on the Peri Bus is taken directly from the address specified in the header of the initiating
SC output message. The address space required by each peripheral varies and for the generic I/O devices is
configurable. The address range, within the 36-bit physical address space, to which the generic I/O devices
are mapped may be configured by writing base address and address mask registers.

ATTENTION: When the address range registers for a generic I/O device are configured, the address mapping
in each CPU’s crossbar interface must be configured correspondingly so that peripheral accesses in the CPU
generate messages destined for the System Control Module crossbar port.

Figure 30: System Control Module Overview

SC
Output

Cross
Interrupt
Reflector

SCL

SDA

crossbar
signals

I2C
Interface

System
Timers

TxD

DTR

RS-232
serial UART RxD

DSR

crossbar
signals

SC
Input

Peri Bus

GIO_AD
GIO_SELGeneric I/O

Interfaces GIO_RDY
GIO_CTL

System Control

Stream Processor

Chapter 13. System Control Module (SC)

132 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

13.2. Cross Interrupt Reflector

The cross interrupt reflector is mapped to the physical address range starting at IRR_Base. See Section 4.3.

13.3. System Timers

There are two system timers in the System Control Module block of the Stream Processor. One is driven by
the CPU clock, the other is driven by an external real-time clock input. The timers can be used to generate
two different interrupts at precisely specified numbers of clock ticks.

Each timer has 4 word length registers that are mapped to ranges starting at Timer_Base for the system clock
timer and Timer_Base + 0x10 for the real time clock timer.

Name: Timer_Count.
Size: 32 bits.
Address: Timer_Base + 0x0.
Restrictions: Read Only.

31-0

Count

Field Bits Description R/W Reset

Count 31-0 Count value. The count increments once for every
cycle of the clock that drives the counter. The count
can neither be written nor reset. The count wraps to
zero when it overflows.

R 0

13.3. System Timers

Stream Processor Lexra Inc. Proprietary & Confidential 133
Rev 2.1 August 1, 2002 DO NOT COPY

Name: Timer_Config
Size: 32 bits.
Address: Timer_Base + 0x4.

Name: Timer_Compare_0.
Size: 32 bits.
Address: Timer_Base + 0x8.

31-16 15-12 11-8 7-4 3 2 1 0

reserved TGTid1 TGTid0 reserved M1 M0 P1 P0

Field Bits Description R/W Reset

reserved 31-16 Must be zero. R/W 0

TGTid1 15-12 Target global thread ID for interrupt 1.

TGTid0 11-8 Target global thread ID for interrupt 0.

reserved 7-4 Must be zero. R/W 0

M1 3 Interrupt Mask 1. Interrupt 1 is enabled when set to 1. R/W 0

M0 2 Interrupt Mask 0. Interrupt 0 is enabled when set to 1. R/W 0

P1 1 Interrupt 1 Pending. This active-high signal indicates
that match 1 has occurred. This bit is asserted
regardless of the interrupt mask bits. Writing a 1 to
this bit clears the pending interrupt.

R/W 0

P0 0 Interrupt 0 Pending. This active-high signal indicates
that match 0 has occurred. This bit is asserted
regardless of the interrupt mask bits. Writing a 1 to
this bit clears the pending interrupt.

R/W 0

31-0

Compare0

Field Bits Description R/W Reset

Compare0 31-0 Compare value 0. When the count reaches this value,
the interrupt pending 0 bit is asserted. If the interrupt
0 mask is not asserted, an interrupt signal will be
asserted.

R/W 0

Chapter 13. System Control Module (SC)

134 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Name: Timer_Compare_1.
Size: 32 bits.
Address: Timer_Base + 0x8.

The clock-tick count is read-only. The compare registers can be read and written. The count increments on
every clock cycle. When the count value equals the value in a compare register the corresponding interrupt
will be set as pending. The timer signals the interrupt using an Interrupt (IN) crossbar message to the target
CPU and context indicated by the TGTid1 or TGTid0 fields of the TimerConfig register. The state of
interrupts can be polled by reading from the status/control bit register at offset 4. Interrupts are cleared by
writing a 1 to their corresponding bits.

Implementation note: To generate an interrupt at a precise regular interval, the exact number of desired clock-
ticks between interrupts should be added to the compare register in the interrupt service routine. Reading the
count register, adding to it, and writing to the compare register is an imprecise method, and should be done
only during system initialization. To calculate the number of desired clock ticks between interrupts, divide
the timer clock source frequency by the desired interrupt frequency.

13.4. I2C Interface

The I2C interface peripheral is an I2C bus master and slave. It conforms to the Philips I2C specification
version 2.1, including multi-master arbitration. The interface supports 10 bit addressing in standard (100
Kbps) and fast (400 Kbps) modes.

Additional details to be supplied.

13.5. Test And Set

The Test And Set register is implemented in the System Control Module. See Section 3.4.1 for description of
this register.

13.6. RS-232 Serial UART

The Stream Processor includes a simple serial UART. It supports RS-232 communication with 1 start bit, 8
data bits, 1 stop bit, and no parity. The UART supports a range of baud rates. It defaults to 9600 baud at reset.

The UART has a data and a configuration word-sized memory-mapped register. Both respond only to word-
sized accesses. For a data register access, only the lower 8-bits of data are valid. A write to the data register
initiates the transmission of a character. A read from the data register returns the next character in the receive
buffer. An interrupt line, output from the UART, is asserted whenever one or more characters are queued in
the receive buffer.

31-0

Compare1

Field Bits Description R/W Reset

Compare1 31-0 Compare value 1. When the count reaches this value,
the interrupt pending 1 bit is asserted. If the interrupt
1 mask is not asserted, an interrupt signal will be
asserted.

R/W 0

13.6. RS-232 Serial UART

Stream Processor Lexra Inc. Proprietary & Confidential 135
Rev 2.1 August 1, 2002 DO NOT COPY

Name: UART_Data.
Size: 32 bits.
Address: SCBase + 0x4.

Name: UART_Status_Config.
Size: 32 bits.
Address: SCBase + 0x0.
SW Init: To use UART interrupts, the interrupt enable fields of this register must be written.

31-8 7-0

reserved UARTData

Field Bits Description R/W Reset

reserved 31-8 unused R/W 0

UART data 7-0 Data written is transmitted by the UART. Data in the
UART receive buffer is read.

R/W 0

31-28 27 26 25 24 23-20 19-16 15-0

reserved TxIntEn TxRdy RxIntEn RxRdy reserved TGTid BaudRate

Field Bits Description R/W Reset

reserved 31-28 Must be zero. R/W 0

TxIntEn 27 Transmit Interrupt Enable. Active high. R/W 0

TxRdy 26 Transmit Ready. Active high. A character may be
transmitted over the UART. Software should poll this
bit before writing data to the UART.

R 1

RxIntEn 25 Receive Interrupt Enable. Active high. R/W 0

RxRdy 24 Receive Data pending. Active high. There is receive
data in the receive buffer.

R 0

reserved 23-20 Must be zero. R/W 0

TGTid 19-16 Target global thread ID for interrupt.

BaudRate 15-0 Baud rate. See table below for baud rate encodings. W 0

Chapter 13. System Control Module (SC)

136 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

The 16 least significant bits of a write to the configuration register define the baud rate.

If the receive interrupt enable flag is set, then an Interrupt (IN) message will be generated whenever a
character is waiting in the receive buffer. If the transmit interrupt enable flag is set, then an interrupt will be
generated whenever the transmit buffer is empty and ready for a new character. All configuration register
accesses must be word sized.

13.7. Generic I/O Interface

4 I/O devices are accessible through the generic I/O interface within the System Control Module Their
address ranges are configurable. By default, device zero responds to a 4 megabytes range starting at physical
address 0x1fc00000 and devices 1-3 are disabled. For a description of the generic I/O interface, see
Chapter 14.

baud rate config (hex) config (binary)
614400 0x000f 0000000000001111
307200 0x001e 0000000000011110
153600 0x003c 0000000000111100
76800 0x0078 0000000001111000
57600 0x00a0 0000000010100000
38400 0x00f0 0000000011110000
28800 0x0140 0000000101000000
19200 0x01e0 0000000111100000
14400 0x0280 0000001010000000
9600 0x03c0 0000001111000000
4800 0x0780 0000011110000000
2400 0x0f00 0000111100000000
1200 0x1e00 0001111000000000
600 0x3c00 0011110000000000
300 0x7800 0111100000000000
150 0xf000 1111000000000000

Stream Processor Lexra Inc. Proprietary & Confidential 137
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 14. Generic I/O Interface (GIO)

14.1. Generic I/O Interface Overview

The Generic I/O Interface (GIO) provides access to off-chip low bandwidth asynchronous devices. Software
running on the Stream Processor accesses GIO devices through memory mapped spaces. These accesses may
be cacheable in L1 instruction and data caches, depending on the nature of the GIO device. However, cache
coherency is not maintained for GIO accesses. Applications requiring cache coherency for GIO accesses
must mange it in software.

The Generic Input/Output Interface includes the following features.

• Decode of four distinct GIO devices with independently configurable timing and protocols.
• Conversion between crossbar transactions and external I/O transactions.
• Multiplexed address/data bus mode, with 32-bit address and 8- 16- or 32-bit data.
• Shared address/data bus mode, with 24-bit address, 8-bit data.
• Single beat and 2, 4, 8, 16, 32, 64, and unlimited beat burst transactions.
• Data handshake and pure timing modes.

The GIO interface accepts transaction requests from the Stream Processor’s internal crossbar. The address
from each request is decoded to determine which of four GIO devices is targeted. Configurable timing and
control parameters determine how crossbar transactions are converted into external GIO transactions. There
is a separate set of configuration parameters for each target device.

The active state (high or low) of all signals except GIO_AD[31:0] is configurable. The GIO_AD[31:0],
GIO_SEL[3:0] and GIO_RDY signals provide dedicated protocol functions. The GIO_CTL[3:0] signals can
be configured to support a wide variety of interface methods.

Throughout this chapter, the variablem represents a Generic I/O Interface device number and the variablen
represents a signal number within a bus.

Figure 31: Generic I/O Interface

Transaction
Conversion

Transaction
Generator

GIO_AD[31:0]

GIO_SEL[3:0]

GIO_RDY

crossbar transactions
(through Peri bus)

Timing
Parameter

GIO_CTL[3:0]

Stream Processor

Chapter 14. Generic I/O Interface (GIO)

138 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

14.2. Generic I/O Interface Signals and Timing

The generic I/O interface provides four independent GIO device select signals and a set of signals that are
shared by all connected GIO devices. For each transaction, one of the select lines is asserted and the shared
signals provide address, data, read/write control and handshaking for the transaction. The active level of all
signals except AD[31:0] can also be set through the configuration registers.

Table 61: Generic I/O Signals

Signal Name Direction Description

GIO_SEL[3:0] output GIO device select lines. One of the these lines is asserted by the
Stream Processor for the duration of a generic I/O transaction to
identify the selected device.

GIO_AD[31:0] inout Address and data lines. These lines operate in multiplexed or non-
multiplexed modes, depending how the generic I/O interface is con-
figured to support the selected GIO device.
For a multiplexed transaction, the Stream Processor drives the low
order 32-bits of the physical address onto AD[31:0] during the trans-
action’s address phase, and drives or receives data over AD[31:0]
during the transaction’s data phase.
For a non-multiplexed transaction, the Stream Processor drives the
low order 24 bits of the physical address onto AD[23:0] and drives
or receives data over AD[31:24]. For clarity, the names A[23:0] and
D[7:0] refer to the AD signals when they are used in the non-multi-
plexed mode.

GIO_RDY input Device Ready. Asserted by the selected GIO device to indicate that
a read or write operation has completed. The Stream Processor
observes this signal only if the generic I/O interface is configured to
honor the data handshake for the selected device. Otherwise, the
configured timing values are used to control the length of the trans-
action’s data phase.

GIO_CTL[3:0] output Programmable control signals. Output enable. Asserted low by the
Stream Processor to enable the selected GIO device’s data output
driver.

14.3. Generic I/O Configuration Overview

Stream Processor Lexra Inc. Proprietary & Confidential 139
Rev 2.1 August 1, 2002 DO NOT COPY

The timing for all signals is controlled through configuration registers, specific to each GIO device. Table 62
shows the supported timing parameters. All timing parameters are specified as a time period in units of
multiples of a crossbar clock period.

14.3. Generic I/O Configuration Overview

This section provides an overview of generic I/O configuration. The configuration registers are described in
detail in Section 14.7.

The Stream Processor’s generic I/O address space is configured with on-chip registers that identify the total
generic I/O address space, and additional on-chip registers that identify the address space and timing
parameters for up to four GIO devices. The address space of each device must fall within the total generic I/O
address space. The total address space of each device may be 64 KBytes to 4 GBytes, and must be a power of
two in size.

Applying reset to the Stream Processor configures Generic I/O device 0 to support a simple ROM located at
physical address range 0x0_1fc0_0000 through 0x0_1fff_ffff. The remaining three devices are disabled
following reset. The reset configuration allows processors to execute boot code from the ROM starting at

Table 62: Generic I/O Timing Parameters

Parameter Description

tAm1 If a single beat transaction, duration that the address is driven. If a mul-
tiple beat transaction duration that the first address is driven. If a hand-
shaking transaction, the duration that the address is driven after RDY is
asserted.

tAm2 Minimum duration that address is not driven prior to starting the next
transaction.

tAm3 If the transaction is four beats or more, duration that the address is
driven for the second and subsequent beats, other than the last beat.
Not used for single beat and two beat transactions.

tAm4 If a multiple beat transaction, duration that the address is driven for the
last beat. Not used for single beat transactions.

tDm1 For write transactions, delay to the start of driving the first data beat.
Not used for read transactions.

tDm2 For write transactions, duration that each data beat is driven. Not used
for read transactions.

tRSm For handshake reads, delay from assertion of RDY until the sampling of
read data. For burst reads, delay from last address transition until the
sampling of the last data. Otherwise, delay from the start of the transac-
tion until the sampling of read data.

tSELm1 Delay for the assertion of GIO_SEL[m].

tSELm2 Delay for the de-assertion of GIO_SEL[m].

tCTLmn1 Delay for the assertion of GIO_CTL[n].

tCTLmn2 Delay for the de-assertion of GIO_CTL[n].

tCTLmn3 Optional timing parameter for multi-beat transactions. Delay between
consecutive assertions of GIO_CTL[n].

Chapter 14. Generic I/O Interface (GIO)

140 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

physical address 0x0_1fc0_0000. Boot code may then configure the generic I/O interface to support the
specific GIO devices that are attached to the Stream Processor.

The address space for generic I/O is configured within each processor’s address space decode logic, via the
AS_GIOBase and AS_GIOTop registers. (See Section 8.7.) When processor makes requests to the crossbar,
it decodes the physical address to identify the crossbar target, using the contents of these registers (and other
address space decode registers). If the address falls within the range specified in the AS_GIOBase and
AS_GIOTop registers, the crossbar request is directed to the generic I/O interface.

When a request reaches the GIO interface, decode logic within the GIO interface uses the address and the
values in the GIO_Maskm and GIO_Addrm registers (m=0-3) to determine which GIO device is to be
accessed. In the case of an overlap in the device address spaces, the lowest numbered device is selected. If
there is no address match, the generic I/O interface sends an error reply to the requestor.

The GIO configuration registers provide the following information for each of the four decoded GIO devices.

• Timing parameters in units of the Stream Processor’s crossbar clock (250 MHz).
• Signal polarity (except AD[31:0]).
• Read data sample time.
• Address/data mode (multiplexed or non-multiplex).
• Data signaling mode (handshake or pure timing).
• Data transfer size (1, 2 or 4 bytes).
• Supported data burst lengths (1, 2, 4, 8, 16, 32, 64, and unlimited beats).

14.4. Generic I/O Transaction Conversion

The GIO interface receives transaction requests from the CPUs over the crossbar, and converts each crossbar
transaction to one or more transactions over the GIO pins. For example, the GIO interface converts a line
read request from the crossbar into a series of read requests to the selected GIO device, gathers the read data
to form a 64-byte line of data, and returns the line read result over the crossbar.

The conversion process follows these rules:

• The address from the original crossbar transaction determines which GIO device is accessed.
• An error response is generated if the request is to an address at which no device or

configuration register is mapped.
• An error response is generated if the request is smaller than the device’s configured size.
• The crossbar transaction is broken into a series of same-size GIO transactions.
• The largest size possible GIO transaction is used (including data bursting).

14.5. Generic I/O Transactions

This section describes all of the GIO transaction types:

• Non-multiplexed read.
• Non-multiplexed write.
• Multiplexed read.
• Multiplexed write.
• Non-multiplexed read with data handshake.
• Non-multiplexed write with data handshake.
• Multiplexed read with data handshake.
• Multiplexed write with data handshake.
• Non-multiplexed burst read.
• Non-multiplexed burst write.

14.5. Generic I/O Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 141
Rev 2.1 August 1, 2002 DO NOT COPY

Note that burst transactions with address/data multiplexing or data handshake are not supported. The length
for burst transactions may be configured for two, four, eight, sixteen, thirty-two, sixty-four, and an unlimited
number of beats. A representative burst length of four beats is shown in burst transaction timing diagrams.

To illustrate how GIO transactions work, this section uses a representative control protocol with address latch
enable, read enable, write enable and output enable controls, as shown in Figure 32. For this application there
is a mix of active high and active low signals. The GIO_CTL[3:0] outputs are configured to provide address
latch enable, read enable, write enable and output enable signals for the GIO devices attached to the Stream
Processor, as described in Table 63.

Other control protocols are possible. For example, instead of separate read enable and write enable controls, a
strobe signal and read/write flag could be used.

Figure 32: Example Generic I/O Interface Application

Transaction
Conversion

Transaction
Generator

GIO_AD[31:0]

GIO_SEL_N[3:0]

GIO_WE_N

GIO_OE_N

GIO_RDY_N

crossbar
signals

Timing
Parameter

GIO_RE_N

GIO_ALE

Stream Processor

Chapter 14. Generic I/O Interface (GIO)

142 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

The timing diagrams indicate the relationships between the timing parameters that control the transition of
signals sourced by the Stream Processor. Each timing parameter is relative to one of several possible
reference points, depending upon the signal and GIO device’s mode of operation.

• The transaction timing starts with the first transition on the address lines.

• The first transition on each other signals is timed from the start of the transaction.

• Except for handshaking, subsequent transitions are timed from the previous transition of

Table 63: Example GIO Application Signals

GIO Signal Application Direction Description

GIO_SEL[3:0] SEL_N[3:0] output GIO device select lines. One of the these lines is
asserted (low) by the Stream Processor for the
duration of a generic I/O transaction to identify the
selected device.

GIO_AD[31:0] AD[31:0] inout Address and data lines. These lines operate in mul-
tiplexed or non-multiplexed modes, depending on
how the generic I/O interface is configured to sup-
port the selected device.
For a multiplexed transaction, the Stream Proces-
sor drives the low order 32-bits of the physical
address onto AD[31:0] during the transaction’s
address phase, and drives or receives data over
AD[31:0] during the transaction’s data phase.
For a non-multiplexed transaction, the Stream Pro-
cessor drives the low order 24 bits of the physical
address onto AD[23:0] and drives or receives data
over AD[31:24]. For clarity, the names A[23:0] and
D[7:0] refer to the AD signals when they are used in
the non-multiplexed mode.

GIO_CTL[0] OE_N output Output enable. Asserted low by the Stream Proces-
sor to enable the selected GIO device’s data output
driver.

GIO_CTL[1] ALE output Address latch enable. For multiplexed transactions,
asserted high by the Stream Processor to signal a
valid address.

GIO_CTL[2] RE_N output Read enable. Asserted low by the Stream Proces-
sor to enable a read transaction for the selected
GIO device.

GIO_CTL[3] WE_N output Write enable. Asserted low by the Stream Proces-
sor to enable a write transaction for the selected
GIO device.

GIO_RDY RDY_N input Device Ready. Asserted low by the selected GIO
device to indicate that a read or write operation has
completed. The Stream Processor observes this
signal only if the generic I/O interface is configured
to honor the data handshake for the selected
device. Otherwise, the configured timing values are
used to control the length of the transaction’s the
data phase.

14.5. Generic I/O Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 143
Rev 2.1 August 1, 2002 DO NOT COPY

the signal.

• In the case of handshaking, some transitions are timed from the assertion of RDY_N.

The reference points employed for each transaction type are defined in the timing diagrams.

The use of the timing parameters for the example protocol is shown in Table 64. These parameters are for a
representative GIO device. The device in this example is attached to GIO interface 0. For clarity, them andn
subscripts in Table 62 are omitted from the timing parameter names in the example application timing
diagrams.

WARNING It is possible to set timing parameters that do not make sense or might even damage the
components that are connected to the GIO interface. No checks are performed by the GIO interface to
prevent such problems. It is the responsibility of the designer to choose reasonable timing parameters.

Table 64: Example GIO Application Parameters

GIO Parameter Application Description

tA01, tA02, tA03, tA04,
tD01, tD02

tA1, tA2, tA3, tA4,
tD1, tD2

Address and data timing. Used as described in Table 62.

tRS0 tRS Delay for the sampling of read data.

tSEL01 tSEL1 Delay for the assertion of SEL_N[0].

tSEL02 tSEL2 Delay for the de-assertion of SEL_N[0].

tCTL001 tOE1 Delay for the assertion of OE_N.

tCTL002 tOE1 Delay for the assertion of OE_N.

tCTL003 - Disabled.

tCTL011 tALE1 Delay for the assertion of ALE.

tCTL012 tALE2 Delay for the de-assertion of ALE.

tCTL013 - Disabled.

tCTL021 tRE1 Delay for the assertion of RE_N.

tCTL022 tRE2 Delay for the de-assertion of RE_N.

tCTL023 - Disabled.

tCTL031 tWE1 Delay for the first assertion of WE_N.

tCTL032 tWE2 Delay for the de-assertion of WE_N.

tCTL033 tWE3 If a multiple beat transaction, delay for the second and sub-
sequent assertions of WE_N. Not used for single beat trans-
actions.

Chapter 14. Generic I/O Interface (GIO)

144 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

.

.

Figure 33: Generic I/O Sim ple Read

Figure 34: Generic I/O Sim ple Write

A[23:0]

SEL_N[i]

OE_N

RE_N

sampling

D[7:0]

WE_N

ALE

tA1

tSEL1

tRE1

tA2

tSEL2

tRE2

tOE1 tOE2

sampletRS

D0137

A[23:0]

SEL_N[i]

WE_N

D[7:0]

OE_N

RE_N

ALE

tA1

tSEL1

tWE1

tA2

tSEL2

tWE2

tD1 tD2

D0139

14.5. Generic I/O Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 145
Rev 2.1 August 1, 2002 DO NOT COPY

.

Figure 35: Generic I/O M ultiplexed Read

Figure 36: Generic I/O Multiplexed Write

sampling

AD[31:0]

SEL_N[i]

ALE

OE_N

RE_N

WE_N

address rd data
tA1

tSEL1

tRE1

tSEL2

tRE2

tA2

tOE1 tOE2

tALE1 tALE2

sampletRS

D0138

AD[31:0]

ALE

SEL_N[i]

WE_N

OE_N

RE_N

address wr data
tA1

tSEL1

tWE1

tSEL2

tWE2

tA2

tD1 tD2
tALE1 tALE2

D0140

Chapter 14. Generic I/O Interface (GIO)

146 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

.

.

Figure 37: Generic I/O Read with Data Handshake

Figure 38: Generic I/O W rite with Data Handshake

A[23:0]

SEL_N[i]

OE_N

RE_N

RDY_N

sampling

D[7:0]

WE_N

ALE

tSEL1

tRE1

tA2

tRE2

tA1

tSEL2

tOE1 tOE2

sampletRS

D0141

A[23:0]

SEL_N[i]

WE_N

D[7:0]

RDY_N

OE_N

RE_N

ALE

tA1

tSEL1

tWE1

tA2

tSEL2

tWE2

tD1 tD2

D0143

14.5. Generic I/O Transactions

Stream Processor Lexra Inc. Proprietary & Confidential 147
Rev 2.1 August 1, 2002 DO NOT COPY

.

Figure 39: Generic I/O M ultiplexed Read with Data Handshake

Figure 40: Generic I/O Multiplexed Write with Data Handshake

sampling

AD[31:0]

SEL_N[i]

ALE

OE_N

RE_N

RDY_N

WE_N

address rd data
tA1

tSEL1

tRE1

tSEL2

tRE2

tA2

tOE1 tOE2

tALE1 tALE2

tRS sample

D0142

AD[31:0]

SEL_N[i]

ALE

WE_N

RDY_N

OE_N

RE_N

address wr data
tA1

tSEL1

tWE1

tSEL2

tWE2

tA2

tD1 tD2

tALE1 tALE2

D0144

Chapter 14. Generic I/O Interface (GIO)

148 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

.

.

Figure 41: Generic I/O Burst Read

Figure 42: Generic I/O Burst W rite

A[23:2]

A[1:0]

SEL_N[i]

OE_N

RE_N

sampling

D[7:0]

WE_N

ALE

n n+1 n+2 n+3

data n data n+1 data n+2 data n+3

tSEL1

tRE1

tSEL2

tRE2

tOE1 tOE2

tA1 tA3 tA3 tA4 tA2

sample_0 sample_1 sample_2 sample_3

tRS

D0146

A[23:2]

A[1:0]

SEL_N[i]

WE_N

D[7:0]

OE_N

RE_N

ALE

n n+1 n+2 n+3

data n data n+1 data n+2 data n+3

tSEL1 tSEL2

tA1 tA3 tA3 tA4 tA2

tD1 tD2 tD2 tD2 tD2

tWE1 tWE2 tWE3 tWE2 tWE3 tWE2 tWE3 tWE2

D0147

14.6. Errors and Error Reporting

Stream Processor Lexra Inc. Proprietary & Confidential 149
Rev 2.1 August 1, 2002 DO NOT COPY

14.6. Errors and Error Reporting

The Generic I/O Interface responds with a bus error message if it receives a tri-byte access or an access that is
narrower than the configured data width of the device. The Generic I/O Interface also responds with a bus
error message if an access is made to an address that is not within the configured range of any of the devices
or does not match a memory mapped configuration register.

14.7. Generic I/O Configuration Registers

The address space is used to access GIO devices is configured via registers in the CPU crossbar interface. See
Sections 8.7.6 and 8.7.7.

The Generic I/O Interface also includes configuration registers for each device, as described in Table 65.

Table 65: Summary of GIO Config Registers for Each Device

Register name
Relative
Address

Description

GIO_Cfgm 0x00 Master device configuration fields

GIO_tAm1 0x04 First transaction address assertion

GIO_tAm2 0x08 Transaction address de-assertion

GIO_tAm3 0x0C Second transaction beat address assertion

GIO_tAm4 0x10 Last transaction beat address assertion

GIO_tDm1 0x14 Transaction data delay

GIO_tDm2 0x18 Transaction data assertion

GIO_tRSm 0x1C Transaction data read sampling

GIO_tSELm1 0x20 Device select delay

GIO_tSELm2 0x24 Device select duration

GIO_tCTLm01 0x28 Device control signal 0 delay

GIO_tCTLm02 0x2C Device control signal 0 assertion

GIO_tCTLm03 0x30 Device control signal 0 de-assertion

GIO_tCTLm11 0x34 Device control signal 1 delay

GIO_tCTLm12 0x38 Device control signal 1 assertion

GIO_tCTLm13 0x3C Device control signal 1 de-assertion

GIO_tCTLm21 0x40 Device control signal 2 delay

GIO_tCTLm22 0x44 Device control signal 2 assertion

Chapter 14. Generic I/O Interface (GIO)

150 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Name: GIO_Cfgm.
Size: 32 bits.
Address: GIOBase + 0x58*m.

GIO_tCTLm23 0x48 Device control signal 2 de-assertion

GIO_tCTLm31 0x4C Device control signal 3 delay

GIO_tCTLm32 0x50 Device control signal 3 assertion

GIO_tCTLm33 0x54 Device control signal 3 de-assertion

31-9 8 7 6-5 4-2 1 0

0 RDY Sense Enable Width Burst Handshake Multiplexed

Field Bits Description R/W Reset

RDY Sense 8 Active state of RDY from device m. This field is only
valid for handshaking devices.

Enable 7 GIO device interface m is enabled. R/W 1 for
device 0
(m=0)

0 for oth-
ers

Width 6-5 The data width of the connected device
 00 = 8 bits
 01 = 16 bits
 10 = 32 bits
 11 = illegal
This field is only valid for multiplexed devices.

R/W 00

Burst 4-2 Maximum burst size supported by the connected
device
 000 = single cycle transactions only
 001 = 2 beat bursts
 010 = 4 beat bursts
 011 = 8 beat bursts
 100 = 16 beat bursts
 101 = 32 beat bursts
 110 = 64 beat bursts
 111 = unlimited bursts
The GIO will never perform larger than a 64 beat
burst since 64 beats from an 8-bit wide device com-
pletes an entire cache line, the largest transaction
transferred over the crossbar. This field is only valid
for non-multiplexed devices.

R/W 000

Handshake 1 1 = Wait for a data ready (RDY) handshake from the
connected device.
0 = Rely only on timing for signal transitions.

R/W 0

Table 65: Summary of GIO Config Registers for Each Device (Continued)

Register name
Relative
Address

Description

14.7. Generic I/O Configuration Registers

Stream Processor Lexra Inc. Proprietary & Confidential 151
Rev 2.1 August 1, 2002 DO NOT COPY

Name: GIO_tAm1.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x04.

Name: GIO_tAm2.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x08.

Multiplexed 0 1 = Address and data are multiplexed on the AD bus.
0 = The address is asserted on the lower 24 bits of
the AD bus and the data is asserted on the upper 8
bits.

R/W 0

31-8 7-0

0 tAm1

Field Bits Description R/W Reset

tAm1 7-0 The number of crossbar clock cycles for which the
first address of a transaction is driven for device m.

R/W 0xff

31-8 7-0

0 tAm2

Field Bits Description R/W Reset

tAm2 7-0 The number of crossbar clock cycles for which the
address is not driven between multiple device trans-
actions to device m.

R/W 0xff

Chapter 14. Generic I/O Interface (GIO)

152 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Name: GIO_tAm3.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x0C.

Name: GIO_tAm4.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x10.

Name: GIO_tDm1.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x14.

31-8 7-0

0 tAm3

Field Bits Description R/W Reset

tAm3 7-0 The number of crossbar clock cycles for which the
address is driven for the second and subsequent
beats of a many beat transaction to device m. Does
not apply to the last beat of a transaction

R/W 0xff

31-8 7-0

0 tAm4

Field Bits Description R/W Reset

tAm4 7-0 The number of crossbar clock cycles for which the
address is driven for the last beat of a multi-beat
transaction to device m. Does not apply to single beat
transactions.

R/W oxff

31-8 7-0

0 tDm1

Field Bits Description R/W Reset

tDm1 7-0 The number of crossbar clock cycles from the start of
a transaction until the first write data beat is driven to
device m.

R/W 0x55

14.7. Generic I/O Configuration Registers

Stream Processor Lexra Inc. Proprietary & Confidential 153
Rev 2.1 August 1, 2002 DO NOT COPY

Name: GIO_tDm2.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x18.

Name: GIO_tRSm.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x1C.

Name: GIO_tSELm1.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x20.

31-8 7-0

0 tDm2

Field Bits Description R/W Reset

tDm2 7-0 The number of crossbar clock cycles for which each
write data beat is driven to device m.

R/W ’0x55

31-8 7-0

0 tRSm

Field Bits Description R/W Reset

tRSm 7-0 The number of crossbar clock cycles after the start of
a read transaction until the read data is sampled from
device m. For burst transactions, the number of
crossbar clock cycles after the last address transition
until the last read data is sampled from device m.

R/W ’0x55

31 30-8 7-0

Active 0 tSELm1

Field Bits Description R/W Reset

Active 31 Active state of tSELn1
 0 = active low
 1 = active high

R/W 0

tSELm1 7-0 The number of crossbar clock cycles from the start of
the transaction until the assertion of GIO_SEL[m]

R/W ’0x2A

Chapter 14. Generic I/O Interface (GIO)

154 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Name: GIO_tSELn2.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x24.

Name: GIO_tCTLmn1.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x28 + 0xC*n.

31-8 7-0

0 tSELm2

Field Bits Description R/W Reset

tSELm2 7-0 The number of crossbar clock cycles for which
GIO_SEL[m] is asserted.

R/W ’0xAA

31 30 29 28-8 7-0

Polarity Read Write 0 tCTLmn1

Field Bits Description R/W Reset

Polarity 31 Active state of tCTLmn1
 0 = active low
 1 = active high

R/W 0

Read 30 Indicates if control line is active for read operations.
 0 = not active for reads
 1 = active for reads

R/W 0

Write 29 Indicates if control line is active for write operations.
 0 = not active for writes
 1 = active for writes

R/W 0

tCTLmn1 7-0 The number of crossbar clock cycles from the start of
the transaction until the assertion of GIO_CTLm[n]

R/W 0x3F

14.7. Generic I/O Configuration Registers

Stream Processor Lexra Inc. Proprietary & Confidential 155
Rev 2.1 August 1, 2002 DO NOT COPY

Name: GIO_tCTLmn2.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x2C + 0xC*n.

Name: GIO_tCTLmn3.
Size: 32 bits.
Address: GIOBase + 0x58*m + 0x30 + 0xC*n.

31-8 7-0

0 tCTLmn2

Field Bits Description R/W Reset

tCTLmn2 7-0 The number of crossbar clock cycles for which
GIO_CTLm[n] is asserted.

R/W 0x6B

31-8 7-0

0 tCTLmn3

Field Bits Description R/W Reset

tCTLmn3 7-0 The number of crossbar clock cycles between con-
secutive assertions of GIO_CTLm[n] in multi-beat
transactions. Does not apply to single beat transac-
tions.

R/W 0x5A

Chapter 14. Generic I/O Interface (GIO)

156 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 157
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 15. EJTAG (EJ)

The Stream Processor has a fully-featured debug capability which allows full visibility to all LX4580 CPU
functions. This capability is based on the MIPS EJTAG Debug Solution 2.0.0 with extra features added to
support HMT.

Standard features include:

• Full control of all LX4580 CPUs via the 5 JTAG pins (TCK, TMS, TDI, TDO, RST_N)

• Instruction and Data Breakpoints (number is TBD).

• Hardware single-stepping of any context.

• SDBBP (software debug breakpoint) and DERET (debug exception return) instructions.

• DMA access directly to memory avoiding TLB or cache.

• Instruction jamming to the LX4580 CPU through the EJTAG memory-mapped region.

Features added to support HMT include:

• Choice of which context takes a debug exception when requested by EJTAG.

• Option to disable other contexts when one context takes a debug exception.

• Instruction and data breakpoints match against a particular context, or all contexts.

• Internal PC trace buffers with compression.

• Internal simultaneous PC trace buffering of all contexts.

• Global interrupt of all LX4580 CPUs when a debug exception occurs in one CPU context.

• Optional connection to EJTAG via RS232 UARTE port on Stream Processor.

SP-1 supplies one set of JTAG pins, through which the TAP controllers for each LX4580 CPU can be daisy-
chained together. The TCK and TMS signals are broadcast (so each TAP is always in the same state) and the
TDI and TDO are daisy-chained - TDO from CPU0 goes to TDI of CPU1, TDO of CPU1 goes to TDI of
CPU2 etc.

Figure 43: SP-1 ETJAG Or ganization

Stream Processor

EJTAG

trace
buffer

LX4580
CPU 0

tap

EJTAG

trace
buffer

LX4580
CPU 1

tap

EJTAG

trace
buffer

LX4580
CPU 2

tap

EJTAG

trace
buffer

LX4580
CPU 3

tap
TDITDOTDITDOTDITDOTDI

TDI

TMS
TCK

TDO

TDO

Chapter 15. EJTAG (EJ)

158 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

THE REMAINDER OF THIS CHAPTER IS FOR INTERNAL LEXRA USE.

15.1. EJTAG Differences from 2.0.0.

The following tables describe implementation options/differences between Lexra’s EJTAG solution and the
MIPS EJTAG Debug Solution 2.0.0 specification. The O/D column indicates an option or a difference.

15.1.1. EJTAG TAP Registers

Table 66: EJTAG TAP Registers

NAME OP Field O/D Implementation Specific Information Reset

Implementation
Read-only Reg-
ister

0x3 0 O 1’b0 Indicates M32 0

4:1 O 4’b0000 - Obsolete Field 0

5 O 1’b0 - Instruction Breaks implemented 0

6 O 1’b0 - Data Breaks implemented 0

7 O 1’b1 - Processor Breaks not implemented 1

10:8 O 3’b000 - no external PC trace 0

13:11 O 3’b000 - no external PC trace 0

16 O 1’b0 - M16 not supported 0

17 O 1’b0 - ICache does not keep DMA coherent 0

18 O 1’b0 - DCache does not keep DMA coherent 0

19 O 1’b1 - EJTAG_ADDR > 32 bits wide 1

20 O 1’b0 - Complex Breaks not supported 0

22:21 O 2’b10 - 8-bit ASID field in implementation 2’b10

23 O 1’b1 - sdbbp is Special2 Opcode 1

25:24 O 2’b00- No profiling support 0

29 D 1’b1 - Lexra Internal Trace Buffer implemented 1

Address 0x8 35:0 36-bit address register - note: Although DMA
accesses use 36-bit addresses, CPU
accesses use 32-bit addresses which will
appear right-justified in this register.

0

Data 0x9 31:0 32-bit data register 0

15.1.1. EJTAG TAP Registers

Stream Processor Lexra Inc. Proprietary & Confidential 159
Rev 2.1 August 1, 2002 DO NOT COPY

Control 0xA 0 D PCBufTAC (PC Trace All Contexts) (R/W)
0 - single context traced (RST value)
1 - all contexts traced

0

5 O 1’b0 DLock not supported (R) 0

6 D DOC (Disable other contexts when in DM)
0 - other contexts not disabled when in DM
1 - other contexts disabled when in DM

0

10 O 1’b0 DMA Error is not supported (R) 0

13 O 1’b0 DMA Abort is not supported (R) 0

14 D SetDev
1 - Debug XCPN vector = 0xBFC00480

0

15 D ProbeEn
0 - Debug XCPN vector = 0xBFC00480

0

19 PrAcc Write not Read. Name incorrect in 2.0.0 0

20 O 1’b0 PerRst is not supported (R) 0

23 D PCBufEn (PC Trace Enable) (W1/R)
0 - Tracing stopped
1 - Start tracing

0

25:24 D PCBufMode (PC Trace Mode) (R/W)
2’b00 - Continuous trace mode
2’b01 - Trigger Stops Trace mode
2’b10 - Trigger Starts Trace mode
2’b11 - Reserved

0

26 O 1’b0 External PC trace not supported 0

28:27 D CDM (Context in DM) (R)
Displays the context currently in debug mode.
Only valid when BrkStatus (bit 3) is set.

0

30:29 D CXS (Context Select) (R/W
Context to be sent debug exception when Jtag-
Brk (bit 12) is set. Only valid when JtagBrk is
set.

0

31 D WasRst (CPU was reset) (R/W)
RST value 1’b0
Reset on a CPU reset. Probe can set this bit to
1 and if it is ever cleared a CPU reset has
occurred.

0

All 0xB 99:0 100-bit register containing concatenation of
Address, Data and Control registers

InternalTrace 0xC - D Data from internal trace buffers. Function
described below.

1

Table 66: EJTAG TAP Registers (Continued)

NAME OP Field O/D Implementation Specific Information Reset

Chapter 15. EJTAG (EJ)

160 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

15.1.2. EJTAG Registers in FF3 (DRSeg)

Below is a table of the options/differences in DRSeg registers with respect to EJTAG 2.0.0. DRSeg starts at
logical address 0xFF300000, from which the offsets below are shown.

Table 67: EJTAG DRSeg Registers

NAME Offset Field O/D Implementation Specific Information Reset

Debug Control 0 0 O Trace Mode not supported 0

1 O Mask Soft Reset not supported 0

2 O Memory Protection not supported 0

3 O Mask NMI in non DM not supported 0

29 O 1’b1 - Endianness (Big) 1

IBS 4 30 O 1’b1 - ASID supported in breaks 1

DBS 8 28 O 1’b1 - Data Break Enhancements 1

30 O 1’b1 - ASID supported in breaks 1

IBAn 0x100
+ 0x10n

1 O 1’b0 - No MIPS16 support 0

IBCn 0x104
+ 0x10n

1 O 1’b0 - Complex break no supported 0

21:20 D Context Value to match.
Causes match for specific context only when
CNTXuse enabled.

0

22 D CNTXuse (context match use)
0 - Match on any context
1 - Match on context given in Context Value

0

IBMn 0x108
+ 0x10n

1 O 1’b0 - No MIPS16 support 0

DBAn 0x200
+0x10n

31:2 Address to match 0

DBCn 0x210
+0x10n

1 O 1’b0 - Complex break not supported 0

12 O No Load Breaks supported
0 - data breaks enabled on loads
1 - data breaks disabled on loads

0

13 O No Store Breaks supported
0 - data breaks enabled on stores
1 - data breaks disabled on stores

0

21:20 D Context Value to match.
Causes match for specific context only when
CNTXuse enabled.

0

22 D CNTXuse (context match use)
0 - Match on any context
1 - Match on context given in Context Value

0

DBMn 0x204
+ 0x10n

31:2 Address Mask - 0 address is not masked
1 - address is masked

0

15.2. Description of LX4580 CPU Specific EJTAG features

Stream Processor Lexra Inc. Proprietary & Confidential 161
Rev 2.1 August 1, 2002 DO NOT COPY

15.2. Description of LX4580 CPU Specific EJTAG features

15.2.1. Disable Other Contexts (DOC) EJTAG Control Register bit 6

This bit affects the behavior of the CPU only when a context is in DM. When this bit is set it causes other
contexts not in debug mode to be disabled no matter what the value of the Disable Context bits in the CP0
LX_CTRL registers. When there are no contexts in debug mode the running state of contexts is determined
by their Disable Contexts bits.

Note: there is a skid associated with DOC. Existing instructions in the pipeline complete before other
contexts are disabled.

When cleared the DOC bit has no affect.

15.2.2. Context Select (CXS) EJTAG Control Register Bits 30:29

The CXS bits allow selection of which context takes a debug exception on JtagBrk (EJC bit 12) being
asserted. Hence, the CXS bits are only valid when JtagBrk is asserted.

15.2.3. Context in Debug Mode (CDM) EJC Bits 28:27

The CDM bits report which context is in debug mode. These bits are only valid when BrkStatus (EJC bit 3) is
asserted.

DBVn 0x208
+0x10n

31:0 D Data Value to Match. Only matched on
stores. Masked on loads.

0

PB*n 0x300* 31:0 O Processor Breaks not supported 0

Table 68: COP0 EJTAG registers

NAME
Addr/
Sel

Field O/D Implementation Specific Information Reset

Debug 23/0 6 O Debug Complex Break Status no supported 0

10 O Bus Error not supported 0

11 O TLB Exception not supported 0

13 O UTLB Miss not supported 0

14 O NMI Status not supported 0

28 O LSNM not supported 0

DEPC 24/0 31:0 As 2.0.0 0

DESAVE 31/0 31:0 As 2.0.0 0

Table 67: EJTAG DRSeg Registers (Continued)

NAME Offset Field O/D Implementation Specific Information Reset

Chapter 15. EJTAG (EJ)

162 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

15.2.4. CNTXUse & CNTX in Breakpoint Control Registers

The CNTXUse and CNTX bits in both Imatch and Dmatch control registers allow matches against a specific
context, or against all contexts.

15.2.5. Precise Data Breaks

Data Breaks are precise. The load or store that matches the data breakpoint will be squashed.

15.2.6. Data Value Break Loads

Data value breaks on loads are not supported.

15.2.7. EJTAG_ADDR (36-bit)

As the Stream Processor has a 36-bit physical address space and a 32-bit logical address space the
EJTAG_ADDR register is 36-bits wide to accommodate the physical address.

EJTAG_ADDR is used for 2 functions determined by the DMA Acc bit in the EJC:

DMAAcc = 1 EJTAG_ADDR is read/write and contains the physical address for a DMA transfer.

DMAAcc = 0 EJTAG_ADDR is read-only and contains the logical address of a processor access (only valid
with PrAcc is set).

So when DMAAcc = 0 EJTAG_ADDR contains a 32-bit logical address in a 36-bit register. It is padded as
follows: {4’b0000, Logical Address}. This does not require a change in behavior, however. As this register is
read-only when DMAAcc=0 reading out EJTAG_ADDR only requires 32 shifts, as before, because the
logical address is right-justified.

15.2.8. PC Trace Buffer & TAC

15.2.8.1. Overview

The PC trace buffer provides real-time PC trace solution which does not restrict the speed of the CPU and
reduces the pin count which is prohibitive for normal PC trace with multiprocessor systems. It employs an
on-chip RAM to store compressed PC trace information for retrieval after-the-fact by the EJTAG probe.
Stored in the RAM is all the information needed to fully reconstruct the program flow.

If tracing is enabled, a buffer entry is written on every PC discontinuity. The buffer entry contains the target of
the discontinuity, the ASID, the number of sequential instructions executed since the last buffer entry was
written, and a trace-point indicator set if a trace point occurred since the last entry was written.

15.2.8. PC Trace Buffer & TAC

Stream Processor Lexra Inc. Proprietary & Confidential 163
Rev 2.1 August 1, 2002 DO NOT COPY

15.2.8.2. CPU EJTAG Block Diagram

The diagram shows the structure of the PC trace buffer block (PCTB). The PCTB receives pipe-flow
information from COP0 every clock cycle. It reads and writes entries into the PCTB RAM.

The control of the PCTB comes from the EJTAG probe which can scan in and scan out control and data via
the TAP to initiate PCTB functions.

15.2.8.3. Block Descriptions

Figure 44: CPU EJTAG Block Diagram

COP0 This block sends W-stage signals to the PCTB providing all the
pipeline information needed to write buffer entries.
Thisinformation comes in the form of the W-stage PC, ASID,
contextand instruction-type code.

PCTB This block is the heart of the PC trace buffer. It receives control
from the probe via retimed registers in EJTAG control.
When tracing it tests the data from COP0 and decides when to
write a buffer entry. It also keeps a count of the sequential
instructions executed since the last buffer entry. It handles all
the RAM accounting keeping track of the Address, RAM
Address wrapping conditions and start/stop tracing conditions.

RAM This block contains the RAM used by the PCTB. It is about 50
bits wide, and 128 entries deep.

EJTAG Control This block contains all the retiming registers for control
information scanned in by the probe. It also containsthe
registers read/written by the probe to control the PCTB.

Probe This is the EJTAG probe. It is external to the chip. It controls
EJTAG by scanning data in and out of registers in EJTAG.

CP0 PCTB

EJTAG
Control,

Scan
& TAP

RAM

Probe

PC info

Type

Context Read Data

Addr

Write Data

R/W

TDI

TDI

TMS

JTCK

CPU EJTAG EJTAG LX2 LX2 off chip

CPU EJTAG EJTAG LX2 LX2 off chip

Chapter 15. EJTAG (EJ)

164 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

15.2.8.4. RAM Format

Here is the description of a buffer entry (assuming SEQ field width = 8):

Here is the description of a header entry:

Bit Name Description

0 VAL 1’b0 marker at the beginning of each entry to indicate
that the memory entry is ready to be scanned (through
the asynchronous interface)

1 TRIG a trigger occurred between this and the previous entry

9:2 SEQ number of sequential instructions since last entry (satu-
rates)

17:10 ASID ASID

48:17 PC PC (Logical Address)

Bit Name Description

0 VAL 1’b0 marker at the beginning of each entry to indicate
that the memory entry is ready to be scanned (through
the asynchronous interface)

4:1 SEQW Width of SEQ field in buffer

10:5 RSVD Reserved = 6’b000000

25:18 ASIDW Width of ASID field. Always 4’b0100

14:30 BUFE Number of valid buffer entries.

15.2.8. PC Trace Buffer & TAC

Stream Processor Lexra Inc. Proprietary & Confidential 165
Rev 2.1 August 1, 2002 DO NOT COPY

15.2.8.5. Mode of Operation

PCTB function is controlled via bits in the EJTAG control register. These bits are bit 23 - PCBufEn
(previously “Sync”) bits 24-25 - PCBufMode (previously PClen) and bit 27 - PCBufTAC (trace all contexts).
Bit 29 in the Implementation Register informs the probe of the presence of the buffer and enables the
secondary definition of the four mode bits.

PCBufEn cannot be cleared directly by the probe. The hardware clears the bit in a number of cases:

1. Buffer full after a trigger (for trigger start and stop modes).

2. By the probe scanning 0x0c into JTAG Instruction register. (to read out buffer entries).

3. Changing the PCBufMODE bits.

PCTB for a Single Context

When PCBufEn=1 the trace buffer continues to fill until a stop condition occurs or debug mode is entered.
When debug mode enters, the trace buffer records an entry for the debug exception vector address (usually
0xff20_0200). On exiting debug mode, the trace buffer records the DEPC address.

In trigger-start mode, when a trigger breakpoint occurs, the trace buffer marks its most recent entry as the
beginning of the buffer. The trace buffer will continue to record entries until it wraps around to this start and
then will stop recording.

PCBufEn a

 bit 23

a. PCBufEn is set by writing a 1 to it only during debug mode. A 0->1 transi-
tion resets the buffer.

PCBufMode
bits 25:24 Buffer Mode b

b. The buffer mode can be scanned in at any time, even when not in debug
mode. If the mode changes during tracing, PCBufEn will be cleared, stop-
ping trace.

1 00 Continuous wrap (reset-state)

1 01 Any trigger stops trace (“trigger-stop”)

1 10 Any trigger starts trace (“trigger-start”), trace

stops when buffer fullc

c. Buffer full means that it wrapped around to the first entry

1 11 Reserved

0 xx Buffer disabled/reset (reset-state)

PCBufTAC
bit 27 Contexts Traced

1 Trace all contexts

0 Trace context currently in debug mode.

Chapter 15. EJTAG (EJ)

166 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

In trigger-stop mode, the trace buffer continues to record entries until a trigger breakpoint occurs. The trace
buffer will then record one more entry.

When PC Trace stops, the PCBufEn will be cleared. The probe will then scan the data out of the buffer. To
restart the trace PCBufEn must be set. This resets the buffer.

To read the buffer, the probe reads each entry sequentially. A new TAP Instruction Register opcode selects the
buffer to be read. This opcode is 0x0C. The first time the probe scans the data register (DR) after scanning in
a 0x0C opcode, it gets the header that describes the widths of the entry fields and the number of entries.

When the TAP controller reaches the “update” state, the hardware reads the first entry into a scan buffer
(through an asynchronous interface since the memory will be operating using SYSCLK). By the time the
TAP comes back around to the first entry, the scan buffer will have the data from the first entry. To indicate
that data is ready, the first bit to be scanned is 1’b0. If for some reason the TAP controller is faster than the
asynchronous interface and data is not yet ready in the scan buffer, the hardware will scan out 1’b1 until data
is ready.

After the first entry has been scanned out, the TAP will leave the scan state. As it passes through the update
state, the next sequential entry is loaded into the scan register.

Note: that it is more traditional that the scan buffer be loaded in the “capture” state. However, since the
asynchronous interface is going to take several cycles, using the previous scan’s update state will get a head-
start on fetching the entry.

If the probe tries to scan out data past the number of entries given in the header, the data read back from 0x0c
will be 1’b1 indicating data not valid.

If the probe changes the JTAG instruction register from 0x0c, the buffer data will be lost. It cannot return to
0x0c and read out more data. If it does the data will again be 1’b1 - not valid.

PCTB for All Contexts

One extra mode of operation is added to support HMT - tracing of all contexts simultaneously. In this mode
data in the buffer is uncompressed and the SEQ field is used as a CONTEXT field to indicate to which
context the data corresponds. This information shows the interaction between threads.

Access to the buffer is the same as when a single context is being debugged.

When the probe starts PC trace all pointers and counters are reset such that any data in the buffer from the
previous trace will be lost.

15.2.9. Instruction Replay

One artifact of HMT is that some instructions (loads and stores) can be speculatively fetched or replayed.
When instructions are jammed there is a possibility that a particular load or store may have to be jammed a
number of times before it is executed. This condition is easily detected as the address reported in
EJTAG_ADDR will not increment when a REPLAY has occurred.

15.2.10.DMwait

The HMT CPU implements a DM Wait feature which prevents more than one context from executing in
Debug mode at any given time. As there is only one instance of various CP0 registers (such as DESAVE)
used to support Debug mode. Furthermore, the EJTAG probe software is unlikely to support intermixed
accesses to the Dmseg and Drseg regions. Therefore, after one context begins executing in Debug Mode (due
to an EJTAG exception) any other context which takes an EJTAG exception is placed in the DM Wait queue.

15.2.11. Debug Mode Overrides Disable Context

Stream Processor Lexra Inc. Proprietary & Confidential 167
Rev 2.1 August 1, 2002 DO NOT COPY

While in the DM Wait state, the context does not issue any instructions. When the first context leaves Debug
Mode (by executing a DERET instruction), the next context in the DM Wait queue resumes execution (in the
EJTAG exception handler).

15.2.11.Debug Mode Overrides Disable Context

If a debug exception occurs on a context which is disabled via the Disable Context bits in the COP0
LX_CTRL, the context will become enabled whilst in debug mode. This will allow the debug exception to be
taken. On exit from debug mode the context will disabled as per its Disable Context bit.

15.2.12.EJTAG BOOT

Via EJTAG BOOT any LX4580 can start execution from probe space after reset. In this mode the reset vector
is changed to 0xFF200200. Thus the first instruction fetched by the LX4580 is from the probe.

This mode is controlled by the value of EJC.ProbeEn at reset. In order for the ProbeEn bit not to be reset itself
it has its own dedicated reset pin on lx2 - PRBENRST_D1_R_N. This pin should only be asserted on a cold
reset, and should not be asserted when JTAG_RST_N is asserted.

To enter EJTAG BOOT mode the following steps should be taken:

Power-up Stream Processor normally and assert/de-assert cold reset (CRESET_N)

Connect the EJTAG probe to the Stream Processor and set the ProbeEn bit in the EJTAG Control Register.

Assert/de-assert JTAG_RST_N

The LX4580 will now be fetching from 0xFF200200. The COP0 DEPC register will be 0x00000000.

15.2.13.The Lexra Probe

Contained in the Stream Processor is the Lexra Probe which sits between the RS232 UARTE block and the
JTAG pins inside the design. ASCII characters can be sent to UARTE which cause instructions to be sent to
CPUs TAP controllers via their JTAG pins.

On power-up the JTAG pins are connected to the JTAG pins of the Stream Processor, but if a character is
received on UARTE the JTAG pins of the LX4580 will be switched to be connected to the Lexra Probe
instead. Only a reset will change the mulitplexer back to the JTAG pins of the Stream Processor.

Chapter 15. EJTAG (EJ)

168 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 169
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 16. Performance Counters

16.1. Performance Counter Overview

The Stream Processor’s hardware performance counters allow applications to be analyzed and tuned to get
the most performance possible. Software may select from a range of events to monitor and count during
normal operation. This chapter summarizes the performance counters and provides cross-references to the
detailed information for each counter.

The performance counters have the following characteristics:

• Accessible through CP0 or memory-mapped registers (depends on counter).

• Low software overhead.

• No impact on operation.

• Multiple 32-bit event counters.

• Selectable events per counter.

• TBD software supplied by Lexra.

16.2. Performance Counter Architecture

The performance counters are distributed throughout Stream Processor, with each counter contained within
the functions that are counted. Counters have the structure shown in Figure 45, consisting of a 32-bit event
counter and counter specific event selection logic. The event counters and selection logic are readable and
writable under CPU program control.

The counters for some functions provide multiple event selection blocks and event counters, allowing more
than one event type to be counted simultaneously. For example, to determine a cache miss ratio, the total
number references and the number of misses may be counted simultaneously.

Counters within a CPU are accessed with the MFC0 and MTC0 instructions. Counters throughout the rest of
the Stream Processor are accessed with load and store instructions, LW and SW.

16.3. Performance Counter Operation

An operating system may extend counter access rights to processes or device drivers. Only one device driver
or process should write to a given counter’s event selection logic or counter for initialization purposes. Any
number of device drivers or processes can safely read the current counter settings.

All counters consist of a 32-bit value. There is no hardware provision for handling the rollover condition of
the counters. At the worst-case rate of one increment per cycle, the minimum rollover period for any counter
is several seconds, e.g. 8 seconds for 500 MHz operation. Software can easily detect a rollover condition and
compensate for it by polling a counter more frequently than this period.

Figure 45: Performance Counter Structure

Event Selection Event Counter
(32 bits)

Events

Inc

Chapter 16. Performance Counters

170 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

16.4. Summary of Performance Counters

Table 69 summarizes the Stream Processor performance counters, and includes a cross-reference to more
detailed information within this data sheet. For replicated functions, e.g. multiple CPUs, the number of
counters shown in the table is for each instance of the function.

Some functional blocks include performance monitoring features other than the standard counter type. These
features listed in Table 70. Additional details on their structure and use are found in the cross-referenced
section.

Table 69: Summary of Performance Counters

Function Counter Events Counters See Sec.

CPU See MIPS32 chapter. 4 2.10

Memory
Subsystem

See memory subsystem chapter 2 9.14

DMA
Controller

The following events may be counted for the DMA control-
ler as a whole or for a selected channel. Non-data refers to
a transaction associated with DMA overhead such as read-
ing a transfer descriptor.

data line read
data line write
non-data line read
non-data line write
data sub-line write
data sub-line read
non-data sub-line write
non-data sub-line read

2 XREF to
be sup-
plied.

Table 70: Additional Performance Monitoring Features

Function Performance Monitoring Feature See Sec.

DMA The following values may be sampled for each queue.

current number of entries held in queue
maximum number of entries held in queue

XREF to be
supplied.

Stream Processor Lexra Inc. Proprietary & Confidential 171
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 17. Error Detection and Reporting

17.1. Error Detection and Reporting Overview

The Stream Processor incorporates error detection and reporting mechanisms required for robust software
and hardware environments. This chapter summarizes these features and provides cross references to more
detailed information throughout this data sheet.

The following error types are detected within the Stream Processor:

• Bus errors:

• Access to an undefined location in the system address space.
• Access to a defined location in the system address space, but with incorrect size.

• Hardware errors:

• Crossbar transaction time-out.
• Byte parity protection for all internal SRAMs.
• ECC (single error correct and multi error detect) for external SDRAM.
• Error detection for external interfaces, as defined by the interface standards.
• INTERNAL USE. State consistency checks (e.g. L1 vs. L1 tag copies).
• INTERNAL USE. Cmd/state consistency checks (e.g. command vs. L1/L2 state).
• INTERNAL USE. Unexpected crossbar replies.

Exceptional conditions that may arise in a device, such as a DMA queue overflow, are not considered in this
chapter. They are described in the applicable chapters.

The reporting of bus errors and hardware errors are handled differently.

Bus errors always cause a Bus Error exception to be taken by the CPU context that initiated the access.

Hardware errors generally cannot be attributed to a specific thread. When an error is detected, applicable
information is recorded within the detecting module for later diagnosis. The Stream Processor is configurable
to report hardware errors so that software can analyze the details and take appropriate action. The following
reporting options are available:

• No report.
• Report error via a global level sensitive interrupt.
• Assert panic output pins for use by system level logic.

17.2. Bus Error Reporting

A bus error arises when a CPU context attempts an invalid access to the Stream Processor’s address space. A
bus error causes an Bus Error exception for the CPU context that attempts the invalid access. It is not possible
to mask bus errors. They are always reported unconditionally to the applicable CPU context.

If a bus error is detected within the CPU’s crossbar interface, no other modules are involved in the error
signalling.

If the bus error is detected within a device, the device sends a crossbar Bus Error (BE) message to the CPU
context that issued the offending request. If the offending request would normally have corresponding reply,
the BE message is issued in place of the reply.

The CPU’s crossbar interface converts the BE transaction into a Bus Error exception. The CPU also releases
any internal resources that would otherwise be held up until the receipt of the normal reply for the request that
caused the BE reply.

Chapter 17. Error Detection and Reporting

172 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

17.3. Hardware Error Reporting

Hardware error detection and reporting blocks are distributed throughout the Stream Processor’s logic
modules. Each module includes the general features shown in Figure 46.

Error detection logic within the block monitors the signals from a data path or other state within the Stream
Processor. The detection logic provides three error output signals and additional diagnostic information that
is captured in a register. The diagnostic information is captured upon the detection of the first error within the
module and is held until it is cleared by software or a hardware reset.

Each block of error logic includes a configuration register that determines how its error(s) are to be reported
through the module’s three output signals.

• Panic0En - assert the Stream Processor’s PANIC0 output pin.

• Panic1En - assert the Stream Processor’s PANIC1 output pin.

• ErrIntEn - assert modules error interrupt signal.

The three reporting options for each detectable error can be set independently. Any combination of reporting
options listed above can be enabled for each detectable error. As a result of reset, all hardware error reporting
options are disabled. Software can enable any combination of reporting options for a module by setting the
appropriate bits in the modules’s configuration registers.

The error flags from the detection logic are ANDed with the enable terms from the configuration register. The
PANIC0 and PANIC1 outputs of all modules are reduction ORed to produce the Stream Processor’s PANIC0
and PANIC1 output signals. The ERR_INT output from each module is passed to the Interrupt Router and
Reflector (IRR), The IRR retains an indication of the first module that reports an error and sources a global
error interrupt signal. The (See Section 4.3.3.)

The Stream Processor reports hardware errors in the most timely manner possible without compromising the
clock speed of the hardware. However, the number of cycles that elapse between an error condition and the
reporting through a panic or interrupt condition is not defined. The global interrupt used to signal a hardware
error to the CPU is by definition imprecise.

17.4. Error Detection Configuration Registers

This section summarizes error detection and reporting registers and provides cross-references to more
detailed information within this data sheet.

TABLE TO BE SUPPLIED.

Figure 46: Error Detection Block Architecture

error
detection

logic

data path or
state information

PANIC0

PANIC1

ERR_INT

diagnostic information

Error

Configure

Panic0En

Panic1En

ErrIntEn

17.5. Error Detection and Reporting Pins

Stream Processor Lexra Inc. Proprietary & Confidential 173
Rev 2.1 August 1, 2002 DO NOT COPY

17.5. Error Detection and Reporting Pins

This section describes the Stream Processor IC pins related to error detection and reporting.

Signal Name Direction Description

PANIC0 output Asserted (high) if one or more errors are detected and the corre-
sponding Panic0En configuration term is set to 1. Otherwise, de-
asserted (low). The meaning of PANIC0 and the system’s response
to its assertion is application defined.

PANIC1 output Asserted (high) if one or more internal Stream Processor errors are
detected and the corresponding Panic1En configuration term is set
to 1. Otherwise, de-asserted (low). The meaning of PANIC1 and the
system’s response to its assertion is application defined.

Chapter 17. Error Detection and Reporting

174 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 175
Rev 2.1 August 1, 2002 DO NOT COPY

Chapter 18. Interfaces

18.1. Interfaces

Table 71: Interface Summary

Name Pins Direction Description

Clocks and Reset (4 pins)

CPUCLK 1 input CPU core clock.

CPUCLK_N 1 input CPU core clock differential input.

CRESET_N 1 input Cold Reset.

DMACLK 1 input DMA core clock.

DMACLK_N 1 input DMA core clock differential input.

JTAG_RST_N 1 input Connection from the EJTAG probe.

Interrupts (4 pins)

INT0_N 1 input External Interrupt Line 0. Active low.

INT1_N 1 input External Interrupt Line 1. Active low.

INT2_N 1 input External Interrupt Line 2. Active low.

INT3_N 1 input External Interrupt Line 3. Active low.

Chip Test and Software Debug (4 pins)

JTAG_TDI 1 input JTAG test data in.

JTAG_TDO 1 output JTAG test data out.

JTAG_TMS 1 input JTAG test mode select.

JTAD_TCK 1 input JTAG clock.

Error Detection (2 pins)

PANIC0 1 output Hardware error detection panic output 0.

PANIC1 1 output Hardware error detection panic output 1.

DDR SDRAM (2 interfaces; n=0,1; total of 230 pins)

MCn_RAS_N 1 output Row address strobe

MCn_CAS_N 1 output Column address strobe

MCn_WE_N 1 output Write enable

MCn_S_N[3:0] 4 output Chip select

MCn_BA[1:0] 2 output Bank address

MCn_A[13:0] 14 output Address

MCn_DQ[71:0] 72 inout Data bus

MCn_DQS[8:0] 9 inout Data strobe

MCn_DQM[8:0] 9 output Data mask

Chapter 18. Interfaces

176 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

MCn_CKE 1 output Clock enable

MC_MEMCLK 1 input Memory clock

GMII (3 interfaces; n=0,1,2; total of 81 pins)

GMIIn_MDC 1 output Management clock.

GMIIn_MDIO 1 inout Management data to/from PHY.

GMIn_GTX_CLK 1 input Transmit reference clock, 2.5, 25 or 125 MHz.

GMIIn_TX_CLK 1 output Transmit clock to PHY.

GMIIn_TXD[7:0] 8 output Transmit data to PHY.

GMIIn_TX_EN 1 output Transmit data enable to PHY.

GMIIn_TX_ER 1 output Transmit error control to PHY.

GMIIn_CRS 1 input Carrier sense from PHY.

GMIIn_COL 1 input Collision detect from PHY.

GMIIn_RX_CLK 1 input Receive clock from PHY.

GMIIn_RXD[7:0] 8 input Receive data from PHY.

GMIIn_RX_DV 1 input Receive data valid from PHY.

GMIIn_RX_ER 1 input Receive error control from PHY.

PCI-X (1 Interface, total of 56 pins)

PCIX_CLK 1 input Clock

PCIX_PAR 1 inout Parity.

PCIX_RST_N 1 input Reset.

PCIX_AD[31:0] 32 inout Address or data.

PCIX_CBE_N[3:0] 4 inout Command and byte enable flags.

PCIX_FRAME_N 1 inout Frame.

PCIX_IRDY_N 1 inout Initiator ready.

PCIX_TRDY_N 1 inout Target ready.

PCIX_STOP_N 1 inout Stop.

PCIX_DEVSEL_N 1 inout Device select.

PCIX_IDSEL 1 input Initialization device select.

PCIX_LOCK_N 1 inout Lock target.

PCIX_PERR_N 1 inout Parity error.

PCIX_SERR_N 1 inout System error.

PCIX_REQ_N 1 output Stream Processor’s request to external arbiter.

Table 71: Interface Summary

Name Pins Direction Description

18.1. Interfaces

Stream Processor Lexra Inc. Proprietary & Confidential 177
Rev 2.1 August 1, 2002 DO NOT COPY

PCIX_GNT_N 1 input Grant from external arbiter.

PCIX_REQIN_N[2:0] 3 input Requests from external PCI devices to Stream Pro-
cessor’s internal arbiter.

PCIX_GNTOUT_N[2:0] 3 output Grants to external PCI devices to Stream Proces-
sor’s internal arbiter.

I2C (1 Interface, total of 2 pins)

I2C_SCL 1 inout Serial clock.

I2C_SDA 1 inout Serial data.

General Purpose Input/Output (1 Interface, total of 41 pins)

GIO_AD[31:0] 32 inout Address (output only) or data (inout).

GIO_SEL_N[3:0] 4 output Device select.

GIO_CTL[3:0] 4 output Controls.

GIO_RDY_N 1 input Device ready.

UART (1 Interface, total of 4 pins)

UART_DTR 1 output Data terminal ready.

UART_DSR 1 input Data set ready.

UART_RXD 1 input Receive data.

UART_TXD 1 output Transmit data.

Table 71: Interface Summary

Name Pins Direction Description

Chapter 18. Interfaces

178 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

Stream Processor Lexra Inc. Proprietary & Confidential 179
Rev 2.1 August 1, 2002 DO NOT COPY

Index

A
address space

boot 35
configuration registers 56
control 35
decoding 34
EJTAG 36
generic I/O interface 36
MIPS32 implementation 15
overview 33
PCI-X 36
SDRAM 36
size 34

AS_DRAMMask register 57
AS_GIOBase register 59
AS_GIOMask register 60
AS_PCIABase register 57
AS_PCIAMask register 58
AS_PCIBBase register 58
AS_PCIBMask register 59

B
BE crossbar message 43
boot

address space 35
multi-CPU cold boot 24
multi-CPU EJTAG boot 24

buffer descriptor (DMA) 104

C
CACHE instruction 9
cacheability

memory subsystem 74
caches

L1 data cache 52
L1 instruction cache 52

Che (coherency engine) 74, 87
checksum (DMA) 115
coherency

memory subsystem 74, 87
MIPS32 implementation 16

configuration registers
address space 56

control address space 35
CP0

hazards 17
registers 10

CPU crossbar interface
CBUS 56, 64
IBUS 56, 67
inquiry and request reply FIFO 56
interrupts 68
overview 55
reply FIFO 56
request FIFO 56

CPU. See LX4580 CPU
CPUX_IntMask register 29, 61
CPUX_IntPend register 29, 60
crossbar

agents 40

coherency effects 76
initiator-target relationships 46
interfaces 48
messages 41
overview 39
protocol 49
transfer networks 47

crossbar interface
CPU 55
memory subsystem 85

D
debug. See EJTAG debug 157
DEV_IntMask register 62
DEV_IntPend register 28, 61
direct memory access. See DMA controllers
divide instructions 9
DL crossbar message 43
DLE crossbar message 43
DLM crossbar message 43
DLS crossbar message 43
DMA controllers

addressing 98
buffer descriptor 104
checksum 115
data bandwidth 98
error handling 115
Ethernet 99
interrupts 114
leading fill 113
Memory Move 101
overview 97
packet mapper 109
PCI-X 99
queue operation 102
queues 102
timestamp 114

DRAM. See memory subsystem
DS crossbar message 43

E
EJTAG debug

address space 36
breakpoints 162
context in debug mode 161
debug mode wait 15
debug mode wait (DMWAIT) 166
differences from 2.0.0 158
disable context override 167
disabling other contexts 161
DRSeg registers 160
EJTAG_ADDR register 162
instruction replay 166
MIPS32 implementation 16
overview 157
selecting a context 161
TAP registers 158
trace buffer 162

endianness (MIPS32 implementation) 16
error handling

180 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

DMA controllers 115
Ethernet 120
generic I/O interface 149
interrupt 29
memory subsystem 82

Ethernet
DMA controller 99
error handling 120
interface 120
overview 119
registers 122
statistics 120

exceptions (MIPS32 architecture) 14
EXT_IntMask register 28, 63
EXT_IntPend register 28, 62

G
generic I/O interface

address space 36
configuration overview 139
configuration registers 149
decoding addresses 34
error handling 149
overview 137
signals 138
timing 138
transaction conversion 140
transactions 140

GIO_Cfgm register 150
GIO_tAm1 register 151
GIO_tAm2 register 151
GIO_tAm3 register 152
GIO_tAm4 register 152
GIO_tCTLmn1 register 154
GIO_tCTLmn2 register 155
GIO_tCTLmn3 register 155
GIO_tDm1 register 152
GIO_tDm2 register 153
GIO_tRSm register 153
GIO_tSELm1 register 153
GIO_tSELn2 register 154

I
IA crossbar message 44
IDE crossbar message 43
IEA crossbar message 44
II crossbar message 43
IIE crossbar message 43
IN crossbar message 43
INA crossbar message 44
instructions (MIPS32 implementation) 7
interfaces

external interrupts 32
generic I/O 137
reset 25

interrupts
CPU cross interrupt 29
CPU crossbar interface 68
device 28
DMA controllers 114
external 28
hardware error 29
interface 32
MIPS32 implementation 13
overview 27

IRA crossbar message 44

IRE crossbar message 43
IRR_CCI register 30
IRR_EIMM register 29
IRR_ModuleErrorCapture register 31

L
L2 cache. See memory subsystem
LI

coherency transaction 92
crossbar message 42

LL instruction 7
LX4580 CPU

cache line replacement algorithm 53
core 52
data cache 52
instruction cache 52
instructions (implementation specific details) 7
MIPS32 implementation 7
MIPS32 Release 2 implementation 18
overview 51

M
memory subsystem

bandwidth 70
cacheability 74
coherency protocol 74
coherency transactions 87
configuration registers 78
crossbar and coherency 76
crossbar interface 85
duplicate L1 tags 73
error handling 82
inquiry messages 75
interfaces 85
interrupt interface 86
L2 cache 72
L2 replacement algorithm 76
messages 72
ordering 72
overview 69
performance counters 80
SDRAM configurations 71
SDRAM interface 86
transactions 72

MIPS32 implementation 7
MIPS32 Release 2 implementation 18
MSnCfg register 78
MSnErrEn0 register 83
MSnErrEn1 register 83
MSnErrStat0 register 84
MSnErrStat1 register 84
MsnErrTO register 84
MSnMemCtl register 79
MSnPcnt0 register 80
MSnPcntEn register 80
MSnPcntEv0 register 81
MSnPcntEv1 register 81

P
packet mapper (DMA) 109
PCI-X

address space 36
arbitration 128
decoding addresses 34
DMA controller 99
interface 128

Stream Processor Lexra Inc. Proprietary & Confidential 181
Rev 2.1 August 1, 2002 DO NOT COPY

master operation 129
overview 127
target operation 129

performance counters
architecture 169
CPU MIPS32 implementation 17
Ethernet statistics 120
memory subsystem 80
operation 169
overview 169
summary 170

PREF instruction 8

Q
queues. See DMA controllers

R
RB

coherency transaction 95
crossbar message 42

registers
AS_DRAMMask 57
AS_GIOBase 59
AS_GIOMask 60
AS_PCIABase 57
AS_PCIAMask 58
AS_PCIBBase 58
AS_PCIBMask 59
CP0 10
CPUX_IntMask 29, 61
CPUX_IntPend 29, 60
DEV_IntMask 62
DEV_IntPend 28, 61
EJTAG TAP 158
EJTAG_ADDR 162
Ethernet 122
ETJAG DRSeg 160
EXT_IntMask 28, 63
EXT_IntPend 28, 62
GIO_Cfgm 150
GIO_tAm1 151
GIO_tAm2 151
GIO_tAm3 152
GIO_tAm4 152
GIO_tCTLmn1 154
GIO_tCTLmn2 155
GIO_tCTLmn3 155
GIO_tDm1 152
GIO_tDm2 153
GIO_tRSm 153
GIO_tSELm1 153
GIO_tSELn2 154
IRR_CCI 30
IRR_EIMM 29
IRR_ModuleErrorCapture 31
MSnCfg 78
MSnErrEn0 83
MSnErrEn1 83
MSnErrStat0 84
MSnErrStat1 84
MsnErrTO 84
MSnMemCtl 79
MSnPcnt0 80
MSnPcntEn 80
MSnPcntEv0 81
MSnPcntEv1 81

TestAndSet 25
Timer_Compare_0 133
Timer_Compare_1 134
Timer_Config 133
Timer_Count 132

replacement algorithm
L1 caches 53
L2 cache 76

reset
CPU 15
distribution 24
interface 25
multi-CPU cold boot 24
multi-CPU EJTAG boot 24
operation 24
overview 23

RH
coherency transaction 95
crossbar message 42

RL
coherency transaction 88–90
crossbar message 41

RLE
coherency transaction 89–90
crossbar message 41

RLM
coherency transaction 90
crossbar message 41

RLME
coherency transaction 90
crossbar message 41

RLN
coherency transaction 93
crossbar message 42

RT
coherency transaction 95
crossbar message 42

RW
coherency transaction 95
crossbar message 42

S
SC instruction 7
SDRAM

address space 36
decoding addresses 34

SDRAM. See also memory subsystem
SYNC instruction 8
system control module 131
system timers 132

T
TestAndSet register 25
Timer_Compare_0 register 133
Timer_Compare_1 register 134
Timer_Config register 133
Timer_Count register 132
timestamp (DMA) 114
trace buffer (EJTAG) 162

U
UDI instructions 9
UM

coherency transaction 90–91
crossbar message 41

UMA crossbar message 43

182 Lexra Inc. Proprietary & Confidential Stream Processor
DO NOT COPY Rev 2.1 August 1, 2002

User Defined Instructions (UDI) 9

V
VE

coherency transaction 92
crossbar message 41

W
WAIT instruction 9
WB

coherency transaction 96
crossbar message 42

WH
coherency transaction 96
crossbar message 42

WLA crossbar message 43
WLI

coherency transaction 92
crossbar message 42

WLN
coherency transaction 94
crossbar message 42

WLS
coherency transaction 92
crossbar message 42

WSA crossbar message 43
WT

coherency transaction 96
crossbar message 42

WW
coherency transaction 96
crossbar message 42

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Stream Processor Product Overview
	1.1. Introduction
	1.2. Key Features
	1.3. Specifications
	1.4. SP-1 Architecture
	1.4.1. LX4580 CPU
	1.4.2. Fine-Grained Hardware Multi-Threading (HMT)
	1.4.3. Crossbar Interconnect
	1.4.4. DMA Controllers

	1.5. Interfaces
	1.6. Software Support
	1.6.1. Operating Systems
	1.6.2. Development Tools
	1.6.3. Sample Applications

	Chapter 2. MIPS32 Implementation Specifics
	2.1. MIPS32 Implementation Specifics Overview
	2.2. MIPS32 Instructions
	2.2.1. LL/SC
	2.2.2. SYNC
	2.2.3. PREF
	2.2.4. CACHE
	2.2.5. WAIT
	2.2.6. Divide (all variants)
	2.2.7. UDI

	2.3. CP0 Registers
	2.4. Interrupts
	2.5. Exceptions
	2.5.1. Reset Context Wait and EJBOOT
	2.5.2. DM Wait and EJTAG (Debug) Exceptions

	2.6. Address Spaces
	2.6.1. Non-Coherence for Different Access Types

	2.7. Endianness
	2.8. EJTAG
	2.9. CP0 Hazards
	2.10. Performance Counters
	2.11. Release 2 Architecture Support
	2.11.1. Release 2 Interrupt Modes, Exceptions, Shadow GPRs
	2.11.2. Hazard Barrier Instructions
	2.11.3. Field, Rotate, Shuffle Instructions
	2.11.4. User Access to Hardware Registers
	2.11.5. CP0 Register Changes
	2.11.6. 64-bit Coprocessor (FPU)
	2.11.7. 1KB Pages

	Chapter 3. Reset (RST)
	3.1. Reset Overview
	3.2. Reset Distribution
	3.3. Reset Operation
	3.4. Reset Registers
	3.4.1. TestAndSet Register (TAS)

	3.5. Reset External SP-1 Interfaces

	Chapter 4. Interrupts (INT)
	4.1. Interrupt Overview
	4.2. Interrupt Architecture
	4.2.1. External Interrupts
	4.2.2. Device Interrupt Messages
	4.2.3. CPU Cross Interrupt Messages
	4.2.4. Hardware Error Interrupt

	4.3. Interrupt Registers
	4.3.1. IRR External Interrupt Master Mask Register (IRR_EIMM\)
	4.3.2. IRR CPU Cross Interrupt Register (IRR_CCI)
	4.3.3. Module Error Capture

	4.4. Interrupt External SP-1 Interfaces

	Chapter 5. Address Space
	5.1. Address Space Overview
	5.2. Address Space Size
	5.3. Physical Address Space Decoding
	5.4. Boot Space
	5.5. Control Space
	5.6. EJTAG Space
	5.7. Generic I/O Space
	5.8. PCI-X Space
	5.9. SDRAM Space
	5.10. Address Space Configuration Registers
	5.11. Error Detection

	Chapter 6. Crossbar (XB)
	6.1. Crossbar Overview
	6.2. Crossbar Architecture
	6.3. Crossbar Messages
	6.3.1. Single Beat Message Format
	6.3.2. RLE, RLME Request Message Format
	6.3.3. DS, WB, WH, WT, WW Message Format
	6.3.4. DL*, WLN, IEA, IRA Message Format
	6.3.5. Message Header, Eviction Address Beat Format
	6.3.6. Data Beat Format
	6.3.7. Error Detection and Reporting

	6.4. Crossbar Operation
	6.4.1. Clocking
	6.4.2. Initiator-Target Relationships
	6.4.3. Crossbar Transfer Networks

	6.5. Crossbar Internal SP-1 Interfaces
	6.5.1. Initiator and Target Message Interfaces
	6.5.2. Initiator and Target Protocols

	Chapter 7. LX4580 CPU
	7.1. LX4580 CPU Overview
	7.2. LX4580 CPU Core
	7.3. Instruction Cache
	7.4. Data Cache
	7.5. Cache Line Replacement Algorithm
	7.6. CPU Error Handling

	Chapter 8. CPU Crossbar Interface (XBI)
	8.1. CPU Crossbar Interface Overview
	8.2. CBUS Interface
	8.3. IBUS Interface
	8.4. Request FIFO
	8.5. Inquiry & Request Reply FIFO
	8.6. Inquiry Reply FIFO
	8.7. System Address Space Configuration Registers
	8.7.1. AS_DRAMMask Register
	8.7.2. AS_PCIABase Register
	8.7.3. AS_PCIAMask Register
	8.7.4. AS_PCIBBase Register
	8.7.5. AS_PCIBMask Register
	8.7.6. AS_GIOBase Register
	8.7.7. AS_GIOMask Register
	8.7.8. CPUX_IntPend Register
	8.7.9. CPUX_IntMask Register
	8.7.10. DEV_IntPend Register
	8.7.11. DEV_IntMask Register
	8.7.12. EXT_IntPend Register
	8.7.13. EXT_IntMask Register

	8.8. CBUS Interface
	8.8.1. CBUS Request Interface
	8.8.2. CBUS Command Encoding
	8.8.3. RLE & RLME Eviction Address
	8.8.4. CBUS Request Reply Interface
	8.8.5. CBUS Request Reply Destination Encoding

	8.9. IBUS Interface
	8.9.1. Inquiry Interface
	8.9.2. IBUS Command Encoding
	8.9.3. Inquiry Reply Interface
	8.9.4. IBUS Header Encoding

	8.10. Interrupt Interface

	Chapter 9. Memory Subsystem (MS)
	9.1. Memory Subsystem Overview
	9.2. Memory Subsystem Requirements
	9.2.1. Transaction Rate and Bandwidth

	9.3. Supported Memory Configurations
	9.4. Messages and Transactions
	9.5. Memory Ordering and Interleave
	9.6. L2 Cache
	9.7. Duplicate L1 Tags
	9.8. Coherency Protocol Overview
	9.9. Cacheability and Coherence
	9.10. Inquiry Messages
	9.11. L2 Cache Line Replacement
	9.12. Coherency Effects of Crossbar Queues
	9.13. Configuration
	9.13.1. MSnCfg Register
	9.13.2. MSnPld Register
	9.13.3. MSnMemCtl Registers

	9.14. Performance Counters
	9.14.1. MSnPcnt0, MSnPcnt1 Register
	9.14.2. MSnPcntEn Register
	9.14.3. MSnPcntEv0, MSnPcntEv1 Register

	9.15. Error Handling
	9.15.1. MSnErrEn0, MSnErrEn1 Register
	9.15.2. MSnErrTO Register
	9.15.3. MSnErrStat0, MSnErrStat1 Register

	9.16. Interfaces
	9.16.1. Crossbar Interface
	9.16.2. Interrupt Interface
	9.16.3. SDRAM Interface

	9.17. Che Transactions

	Chapter 10. Direct Memory Access (DMA)
	10.1. Direct Memory Access Overview
	10.2. Addressing
	10.2.1. Ethernet and PCI-X DMA Controller Organization
	10.2.2. Memory Move DMA Controller Organization

	10.3. Queue Configuration
	10.4. Queue Operation
	10.5. Buffer Descriptors
	10.6. Input Queue Assignment with Packet Mapper
	10.7. Inserting Leading Fill Into Input Packets
	10.8. Skipping Leading Fill From Output Packets
	10.9. Input Packet Timestamp
	10.10. Output Queue Selection
	10.11. Interrupts
	10.12. Checksum Calculation
	10.13. Error Detection and Handling
	10.14. Memory Bandwidth Requirement
	10.15. DMA Controller Registers

	Chapter 11. Ethernet Media Access Controller (MAC)
	11.1. Ethernet Media Access Controller Overview
	11.2. Gigabit Media Independent Interface (GMII)
	11.3. Error Signalling and Statistics Reporting
	11.4. Registers

	Chapter 12. PCI-X Bridge (PXB)
	12.1. PCI-X Bridge Overview
	12.2. PCI-X Interface
	12.3. PCI-X Arbitration
	12.4. PCI-X Master Operation
	12.5. PCI-X Target Operation
	12.6. PCI-X Registers

	Chapter 13. System Control Module (SC)
	13.1. System Control Module Overview
	13.2. Cross Interrupt Reflector
	13.3. System Timers
	13.4. I2C Interface
	13.5. Test And Set
	13.6. RS-232 Serial UART
	13.7. Generic I/O Interface

	Chapter 14. Generic I/O Interface (GIO)
	14.1. Generic I/O Interface Overview
	14.2. Generic I/O Interface Signals and Timing
	14.3. Generic I/O Configuration Overview
	14.4. Generic I/O Transaction Conversion
	14.5. Generic I/O Transactions
	14.6. Errors and Error Reporting
	14.7. Generic I/O Configuration Registers

	Chapter 15. EJTAG (EJ)
	15.1. EJTAG Differences from 2.0.0.
	15.1.1. EJTAG TAP Registers
	15.1.2. EJTAG Registers in FF3 (DRSeg)

	15.2. Description of LX4580 CPU Specific EJTAG features
	15.2.1. Disable Other Contexts (DOC) EJTAG Control Register bit 6
	15.2.2. Context Select (CXS) EJTAG Control Register Bits 30:29
	15.2.3. Context in Debug Mode (CDM) EJC Bits 28:27
	15.2.4. CNTXUse & CNTX in Breakpoint Control Registers
	15.2.5. Precise Data Breaks
	15.2.6. Data Value Break Loads
	15.2.7. EJTAG_ADDR (36-bit)
	15.2.8. PC Trace Buffer & TAC
	15.2.9. Instruction Replay
	15.2.10. DMwait
	15.2.11. Debug Mode Overrides Disable Context
	15.2.12. EJTAG BOOT
	15.2.13. The Lexra Probe

	Chapter 16. Performance Counters
	16.1. Performance Counter Overview
	16.2. Performance Counter Architecture
	16.3. Performance Counter Operation
	16.4. Summary of Performance Counters

	Chapter 17. Error Detection and Reporting
	17.1. Error Detection and Reporting Overview
	17.2. Bus Error Reporting
	17.3. Hardware Error Reporting
	17.4. Error Detection Configuration Registers
	17.5. Error Detection and Reporting Pins

	Chapter 18. Interfaces
	18.1. Interfaces

	Index

